Major depressive disorder (MDD) is the most common psychiatric disease worldwide with a huge socio-economic impact. Pharmacotherapy represents the most common option among the first-line treatment choice; however, only about one third of patients respond to the first trial and about 30% are classified as treatment-resistant depression (TRD). TRD is associated with specific clinical features and genetic/gene expression signatures.
View Article and Find Full Text PDFIntroduction: The etiology of major depressive disorder (MDD) involves the interaction between genes and environment, including treatment. Early molecular signatures for treatment response and remission are relevant in a context of personalized medicine and stratification and reduce the time-to-decision. Therefore, we focused the analyses on patients that responded or remitted following a cognitive intervention of 8 weeks.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2023
Background: DNA methylation as a biomarker is well suited to investigate dynamic processes, such as symptom improvement. For this study we focus on epigenomic state or trait markers as early signatures of cognitive improvement in individuals receiving a cognitive intervention. We performed a first epigenome-wide association study (EWAS) on patients with cognitive dysfunction in depression comparing those with vs without cognitive dysfunction and those cognitively improving vs non-improving following a cognitive intervention.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2023
Cognitive dysfunction contributes significantly to the burden caused by Major Depressive Disorder (MDD). Yet, while compelling evidence suggests that different biological processes play a part in both MDD aetiology and the development of cognitive decline more generally, we only begin to understand the molecular underpinnings of depression-related cognitive impairment. Developments in psychometric assessments, molecular high-throughput methods and systems biology derived analysis strategies advance this endeavour.
View Article and Find Full Text PDFPTSD is a prevalent mental disorder that results from exposure to extreme and stressful life events and comes at high costs for both the individual and society. Therapeutic treatment presents the best way to deal with PTSD-the mechanisms underlying change after treatment, however, remain poorly understood. While stress and immune associated gene expression changes have been associated with PTSD development, studies investigating treatment effects at the molecular level so far tended to focus on DNA methylation.
View Article and Find Full Text PDFThe experience of adversity in childhood has been associated with poor health outcomes in adulthood. In search of the biological mechanisms underlying these effects, research so far focused on alterations of DNA methylation or shifts in transcriptomic profiles. The level of protein, however, has been largely neglected.
View Article and Find Full Text PDFExposure to serious or traumatic events early in life can lead to persistent alterations in physiological stress response systems, including enhanced cross talk between the neuroendocrine and immune system. These programming effects may be mechanistically involved in mediating the effects of adverse childhood experience on disease risk in adulthood. We investigated hormonal and genome-wide mRNA expression responses in monocytes to acute stress exposure, in a sample of healthy adults (n=30) with a history of early childhood adversity, and a control group (n=30) without trauma experience.
View Article and Find Full Text PDF