We report the stepwise assembly of supramolecular daisy chain rotaxanes (DCR) made of double-stranded DNA: Small dsDNA macrocycles bearing an axle assemble into a pseudo-DCR precursor that was connected to rigid DNA stoppers to form DCR with the macrocycles hybridized to the axles. In presence of release oligodeoxynucleotides (rODNs), the macrocycles are released from their respective hybridization sites on the axles, leading to stable mechanically interlocked DCRs. Besides the expected threaded DCRs, certain amounts of externally hybridized structures were observed, which dissociate into dumbbell structures in presence of rODNs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2014
Molecular interlocked systems with mechanically trapped components can serve as versatile building blocks for dynamic nanostructures. Here we report the synthesis of unprecedented double-stranded (ds) DNA [2]- and [3]rotaxanes with two distinct stations for the hybridization of the macrocycles on the axle. In the [3]rotaxane, the release and migration of the "shuttle ring" mobilizes a second macrocycle in a highly controlled fashion.
View Article and Find Full Text PDF