The accuracy of cephalometric landmark identification for malocclusion classification is essential for diagnosis and treatment planning. Identifying these landmarks is often complex and time-consuming for orthodontists. An AI model for classification was recently developed.
View Article and Find Full Text PDFMolecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM.
View Article and Find Full Text PDFPolymer-multiwalled carbon nanotube (MWCNT) nanohybrids, which differ in surface charge have been synthesized to study the bioelectrocatalysis of adsorbed cellobiose dehydrogenase (CDH) from Phanerochaete sordida on gold electrodes. To obtain negatively charged nanohybrids, poly(3-amino-4-methoxybenzoic acid-co-aniline) (P(AMB-A)) was covalently linked to the surface of MWCNTs while modification with p-phenylenediamine (PDA) converted the COOH-groups to positively charged amino groups. Fourier transform infrared spectroscopy (FTIR) measurements verified the p-phenylenediamine (PDA) modification of the polymer-CNT nanohybrids.
View Article and Find Full Text PDFThe multilayer formation of two different sulfonated polyanilines with cytochrome c is presented and mechanistic aspects of the contributions of the polyelectrolytes' properties to the characteristics of the assemblies are discussed. These two modified polymers, PASA1 and PASA2 are chemically synthesized and differ in the grade of sulfonation, substitution, and the chain length of the polymer. The influence of these properties on the multilayer assembly with cytochrome c is studied in detail by Quartz Crystal Microbalance (QCM) technique and Cyclic Voltammetry (CV).
View Article and Find Full Text PDF