Motivation: Nanobodies are a subclass of immunoglobulins, whose binding site consists of only one peptide chain, bestowing favorable biophysical properties. Recently, the first nanobody therapy was approved, paving the way for further clinical applications of this antibody format. Further development of nanobody-based therapeutics could be streamlined by computational methods.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies and their derivatives are key components of clinical pipelines in the global biopharmaceutical industry. The availability of large datasets of antibody sequences, structures, and biophysical properties is increasingly enabling the development of predictive models and computational tools for the "developability assessment" of antibody drug candidates. Here, we provide an overview of the antibody informatics tools applicable to the prediction of developability issues such as stability, aggregation, immunogenicity, and chemical degradation.
View Article and Find Full Text PDFBackground: Before the advent of an effective vaccine, nonpharmaceutical interventions, such as mask-wearing, social distancing, and lockdowns, have been the primary measures to combat the COVID-19 pandemic. Such measures are highly effective when there is high population-wide adherence, which requires information on current risks posed by the pandemic alongside a clear exposition of the rules and guidelines in place.
Objective: Here we analyzed online news media coverage of COVID-19.