Publications by authors named "Johannes Stingl"

The transient electronic and molecular structure arising from photoinduced charge transfer in transition metal complexes is studied by X-ray powder diffraction with a 100 fs temporal and atomic spatial resolution. Crystals containing a dense array of Fe(II)-tris(bipyridine) ([Fe(bpy)3](2 +)) complexes and their [Formula: see text] counterions display pronounced changes of electron density that occur within the first 100 fs after two-photon excitation of a small fraction of the [Fe(bpy)3](2 +) complexes. Transient electron density maps derived from the diffraction data reveal a transfer of electronic charge from the Fe atoms and-so far unknown-from the [Formula: see text] counterions to the bipyridine units.

View Article and Find Full Text PDF

The interplay of vibrational motion and electronic charge relocation in an ionic hydrogen-bonded crystal is mapped by X-ray powder diffraction with a 100 fs time resolution. Photoexcitation of the prototype material KH(2)PO(4) induces coherent low-frequency motions of the PO(4) tetrahedra in the electronically excited state of the crystal while the average atomic positions remain unchanged. Time-dependent maps of electron density derived from the diffraction data demonstrate an oscillatory relocation of electronic charge with a spatial amplitude two orders of magnitude larger than the underlying vibrational lattice motions.

View Article and Find Full Text PDF

Photonic crystal (PC) nanocavities based on silicon nitride membranes are studied as tools for the manipulation of spontaneous emission in the wavelength range between 550 nm and 800 nm. We observe a strong modification of the fluorescence spectrum of dye molecules spin-cast on top of the PC, indicating an efficient coupling of the dye emission to the cavity modes. The cavity design is optimized with respect to the quality factor and values of nearly 1500 are achieved experimentally.

View Article and Find Full Text PDF