Publications by authors named "Johannes Schwider"

The modulus of the degree of coherence can be derived from interference patterns either by using fringes and next neighbour operations or by using several interferograms produced through phase shifting. Here the latter approach will be followed by using a lateral shearing interferometer exploiting a diffractive grating wedge providing a linearly progressive shear. Phase shifting methods offer pixel-oriented evaluations but suffer from instabilities and drifts which is the reason for the derivation of an error immune algorithm.

View Article and Find Full Text PDF

The homogeneity test of glass plates in a Fizeau interferometer requires the measurement of the glass sample in reflected as well as in transmitted light. For the measurement in transmitted light, the sample has to be inserted into the ray path of a Fizeau or Twyman-Green interferometer, which leads to a nested cavity setup. To separate the interference signals from the different cavities, we illuminate a Fizeau interferometer with an adaptive frequency comb.

View Article and Find Full Text PDF

The 50-year life span of Applied Optics covers also approximately the time I have been engaged in optics. I started in 1962 [1] with the Institute for Optics and Spectroscopy, which was one of several Academy Institutes (mission statement: "theoria cum praxi," G. Leibniz) located in Berlin-Adlershof on the area of the first airfield in Berlin dating back to the beginning of the 20th century.

View Article and Find Full Text PDF

Measurements of wavefront deformations can be carried out with the help of lateral shearing interferometers. Here the focus is on a setup providing two shears along orthogonal directions simultaneously to generate the data needed for a reconstruction. We describe a diffractive solution using Ronchi phase gratings with a suppressed zeroth order for both the doubling of the wavefront under test and the bidirectional shearing unit.

View Article and Find Full Text PDF

We report on interferometric characterization of a deep parabolic mirror with a depth of more than five times its focal length. The interferometer is of Fizeau type; its core consists of the mirror itself, a spherical null element, and a reference flat. Because of the extreme solid angle produced by the paraboloid, the alignment of the setup appears to be very critical and needs auxiliary systems for control.

View Article and Find Full Text PDF

Aspheric optical surfaces are often tested using diffractive optics as null elements. For precise measurements, the errors caused by the diffractive optical element must be calibrated. Recently, we reported first experimental results of a three position quasi-absolute test for rotationally invariant aspherics by using combined-diffractive optical elements (combo-DOEs).

View Article and Find Full Text PDF

We have already reported a method for the quasi-absolute test of rotationally symmetric aspheres by means of combined diffractive optical elements (combo-DOEs). The combo-DOEs carry the information for the ideal shape of an aspheric surface under test as well as a spherical wave for the measurement at the cat's eye position. An experimental demonstration of the procedure is given.

View Article and Find Full Text PDF

Cylindrical specimens may be tested advantageously by using grazing-incidence interferometry. A multiple positions test in combination with rotational averaging has recently been used to separate the surface deviations of the specimen from the interferometric aberrations. To reduce the measuring time and to check whether the results are reliable, a second procedure is now investigated, which uses the principle of the multiple positions test to determine quantities proportional to the difference quotients of the surface deviations.

View Article and Find Full Text PDF

Interferometry in grazing incidence can be used to test cylindrical mantle surfaces. The absolute accuracy of the resulting surface profiles is limited by systematic wavefront aberrations caused in the interferometer, in particular due to an inversion of the test wavefront in an interferometer using diffractive beam splitters. For cylindrical specimens, a calibration method using four positions has therefore been investigated.

View Article and Find Full Text PDF

A diffractive grazing-incidence interferometer for the test of cylindrical lenses is described. Besides surface aberrations from the ideal shape, the interferometer allows for the simultaneous determination of the relative position and orientation of surfaces to another. The measurement principle as well as a classification of deviation types is given.

View Article and Find Full Text PDF

One important feature of grazing-incidence interferometry is the anamorphotic distortion or the fore-shortened view of the interference pattern along the optical axis caused by the geometry of theinterferometer. To compensate for the consequential lower resolution along the optical axis, a setup was built in which the object plane is imaged onto a rectifying grating, ensuring sharp mapping of the whole specimen onto the detector. A volume hologram and a diffraction grating serve as rectifying elements and are applied to measure various types of planar objects such as mirrors and structured plastic samples.

View Article and Find Full Text PDF

Discontinuous surface profiles, e.g., diffractive optical elements (DOEs), are commonly measured by white-light interferometry.

View Article and Find Full Text PDF

Testing of aspherics by means of computer-generated holograms (CGHs) is well known. To perform a quasi-absolute test of rotationally symmetric aspheric surfaces, two wave fronts must be encoded in the CGH. Both the null lens and a spherical lens have to be stored.

View Article and Find Full Text PDF

Grazing-incidence interferometry that makes use of diffractive axicons for the measurement of cylindrical mantle surfaces has already been reported. However, measurement of concave rod structures poses a severe problem because these structures are subject to spurious fringes caused by parasitic diffraction orders of the diffractive axicons. By breaking the symmetry of the interferometric setup it is possible to obtain unique interferograms of the inner mantle surfaces of hollow cylinders as cages for roller bearings or other workpieces produced on lathe machines that have a suitable surface finish.

View Article and Find Full Text PDF