Publications by authors named "Johannes Schulz-Fincke"

Epigenetic modulators such as lysine-specific demethylase 1 (LSD1) and histone deacetylases (HDACs) are drug targets for cancer, neuropsychiatric disease, or inflammation, but inhibitors of these enzymes exhibit considerable side effects. For a potential local treatment with reduced systemic toxicity, we present here soft drug candidates as new LSD1 and HDAC inhibitors. A soft drug is a compound that is degraded in vivo to less active metabolites after having achieved its therapeutic function.

View Article and Find Full Text PDF

LSD1 has emerged as a promising epigenetic target in the treatment of acute myeloid leukemia (AML). We used two murine AML models based on retroviral overexpression of Hoxa9/Meis1 (H9M) or MN1 to study LSD1 loss of function in AML. The conditional knockout of Lsd1 resulted in differentiation with both granulocytic and monocytic features and increased ATRA sensitivity and extended the survival of mice with H9M-driven AML.

View Article and Find Full Text PDF

FAD-dependent lysine-specific demethylase 1 (LSD1) is overexpressed or deregulated in many cancers such as AML and prostate cancer and hence is a promising anticancer target with first inhibitors in clinical trials. Clinical candidates are N-substituted derivatives of the dual LSD1-/monoamine oxidase-inhibitor tranylcypromine (2-PCPA) with a basic amine function in the N-substituent. These derivatives are selective over monoamine oxidases.

View Article and Find Full Text PDF

Spontaneous electron transport to molecular oxygen led to regeneration of oxidised nicotinamide cofactor in cell lysates that contain an alcohol dehydrogenase, a quinone reductase and a quinone mediator. This concept allows the efficient oxidation of alcohols in the presence of alcohol dehydrogenase-containing E. coli lysates and catalytic amounts of the quinone lawsone.

View Article and Find Full Text PDF

Posttranslational modifications of histone tails are very important for epigenetic gene regulation. The lysine-specific demethylase LSD1 (KDM1A/AOF2) demethylates in vitro predominantly mono- and dimethylated lysine 4 on histone 3 (H3K4) and is a promising target for drug discovery. We report a heterogeneous antibody-based assay, using dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) for the detection of LSD1 activity.

View Article and Find Full Text PDF

Lysine demethylases play an important role in epigenetic regulation and thus in the development of diseases like cancer or neurodegenerative disorders. As the lysine specific demethylase 1 (LSD1/KDM1) has been strongly connected to androgen and estrogen dependent gene expression, it serves as a promising target for the therapy of hormone dependent cancer. Here, we report on the discovery of new small molecule inhibitors of LSD1 containing a propargylamine warhead, starting out from lysine containing substrate analogues.

View Article and Find Full Text PDF