A cationizable sequence-defined lipo-oligoaminoamide (lipo-OAA) conferring stable assembly of siRNA into ~200 nm sized complexes contains an N-terminal azidolysine for covalent coating of formed nanoparticles with dibenzocyclooctyne-amine (DBCO)-modified hyaluronic acid (HA). Depending on the applied equivalents of DBCO-HA, stable nanoparticles with either cationic or anionic surface charge can be formed. The unmodified and two types of covalent HA-modified siRNA nanoparticles differ in their biological characteristics.
View Article and Find Full Text PDFThe delivery of small interfering RNA (siRNA) and its therapeutic usage as an anti-cancer agent requires a carrier system for selective internalization into the cytosol of tumor cells. We prepared folate-bearing formulations by first complexing siRNA with the novel azido-functionalized sequence-defined cationizable lipo-oligomer 1106 (containing two cholanic acids attached to an oligoaminoamide backbone in T-shape configuration) into spherical, ∼100-200 nm sized lipopolyplexes, followed by surface-functionalization with various folate-conjugated DBCO-PEG agents. Both the lipo-oligomer and the different defined shielding and targeting agents with mono- and bis-DBCO and varying PEG length were generated by solid phase supported synthesis.
View Article and Find Full Text PDF