Lipids through regulation of chronic inflammation play key roles in the development of various diseases. Here, we report that a mixed population of human primary monocytes migrated towards LPC, as well as oxidized linoleic acid isoforms 9-S-HODE, 9-R-HODE and 13-R-HODE. Incubation with 9-R-HODE, 13-R-HODE and LPC resulted in increased expression of CXCR4, the receptor for SDF-1α/CXCL12, correlated with increased monocyte migration towards SDF-1α/CXCL12.
View Article and Find Full Text PDFChemokines are a diverse group of molecules with important implications for the development of solid tissues and normal function of the immune system. However, change of the conditions for such a complex system can have important and dangerous consequences leading to diseases. The specific implications of the various chemokines in diseases have been elucidated in the last few years, prompting hope of manipulating this system for therapy or prevention of diseases.
View Article and Find Full Text PDFInflammatory lipids receive much attention due to their important biological activities. Knowledge of the chemokine system has also reached a level that makes it interesting in clinics, which prompted clinical trials into compounds manipulating chemokines or their receptors. However, little attention has been devoted to understand the relations between these two systems.
View Article and Find Full Text PDFWe previously reported that human NK cells express G2A and they respond to LPC. Here, we report that oxidized lipids such as 9-R-HODE, 9-S-HODE and 13-R-HODE, as well as LPC induced the in vitro chemotaxis of human NK cells, although with variable efficacies. The chemotactic effects of these lipids were inhibited by prior treatment of NK cells with pertussis toxin (PTX).
View Article and Find Full Text PDFThe effects of lysophospholipids (LPLs) on cancer microenvironment is a vast and growing field. These lipids are secreted physiologically by various cell types. They play highly important roles in the development, activation and regulation of the immune system.
View Article and Find Full Text PDFThe aims of this study are to examine the effect of sphingosine 1-phosphate (S1P) on IL-2-activated natural killer (NK) cell lysis of K562 tumor cells and immature dendritic cells (iDCs), and to investigate the mechanisms involved in S1P activity. Our results show that S1P protected K562 cells or iDCs from NK cell lysis, which was reversed by FTY720 and SEW2871, the antagonists of S1P(1). S1P did not modulate the expression of NKG2D, NKp30, NKp44 or CD158 on the surface of NK cells, and neither affected the expression of CD80, CD83, or CD86 on the surface of DCs.
View Article and Find Full Text PDFNatural killer (NK) cells are antitumour/anti-viral effectors and play important roles in shaping the immune system, but their role in neurodegenerative diseases is not clear. Here, we investigated the fate of these cells in two neurodegenerative diseases. In the first model, the activity of NK cells was examined in mice with experimental autoimmune encephalomyelitis (EAE) treated with glatiramer acetate (GA or Copaxone), a drug used to treat EAE in animals and multiple sclerosis in human.
View Article and Find Full Text PDF