Tissue specificity or dramatically different expression levels of transcription factors in different tissue types allows differential regulation of tissue development as well as alternate modes of metabolic regulation. Recently we reported (Rohrmann et al., 2011) the development of a quantitative real-time PCR platform (qRT-PCR) that allows accurate quantification of the expression level of approximately 1000 tomato transcription factors.
View Article and Find Full Text PDFModulation of the malate content of tomato (Solanum lycopersicum) fruit by altering the expression of mitochondrially localized enzymes of the tricarboxylic acid cycle resulted in enhanced transitory starch accumulation and subsequent effects on postharvest fruit physiology. In this study, we assessed whether such a manipulation would similarly affect starch biosynthesis in an organ that displays a linear, as opposed to a transient, kinetic of starch accumulation. For this purpose, we used RNA interference to down-regulate the expression of fumarase in potato (Solanum tuberosum) under the control of the tuber-specific B33 promoter.
View Article and Find Full Text PDFThe PIN-FORMED (PIN) auxin efflux transport protein family has been well characterized in the model plant Arabidopsis thaliana, where these proteins are crucial for auxin regulation of various aspects of plant development. Recent evidence indicates that PIN proteins may play a role in fruit set and early fruit development in tomato (Solanum lycopersicum), but functional analyses of PIN-silenced plants failed to corroborate this hypothesis. Here it is demonstrated that silencing specifically the tomato SlPIN4 gene, which is predominantly expressed in tomato flower bud and young developing fruit, leads to parthenocarpic fruits due to precocious fruit development before fertilization.
View Article and Find Full Text PDFMaturation of fleshy fruits such as tomato (Solanum lycopersicum) is subject to tight genetic control. Here we describe the development of a quantitative real-time PCR platform that allows accurate quantification of the expression level of approximately 1000 tomato transcription factors. In addition to utilizing this novel approach, we performed cDNA microarray analysis and metabolite profiling of primary and secondary metabolites using GC-MS and LC-MS, respectively.
View Article and Find Full Text PDFDespite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection.
View Article and Find Full Text PDF