Publications by authors named "Johannes Plagge"

Interest in bile acids (BAs) is growing due to their emerging role as signaling molecules and their association with various diseases such as colon cancer and metabolic syndrome. Analyzing BAs requires chromatographic separation of isomers, often with long run times, which hinders BA analysis in large studies. Here, we present a high-throughput method based on liquid chromatography-tandem mass spectrometry to quantify BAs in mouse samples.

View Article and Find Full Text PDF

Lipid composition is conserved within sub-cellular compartments to maintain cell function. Lipidomic analyses of liver, muscle, white and brown adipose tissue (BAT) mitochondria revealed substantial differences in their glycerophospholipid (GPL) and free cholesterol (FC) contents. The GPL to FC ratio was 50-fold higher in brown than white adipose tissue mitochondria.

View Article and Find Full Text PDF

Background & Aims: Hepatocyte growth and proliferation depends on membrane phospholipid biosynthesis. Short-chain fatty acids (SCFAs) generated by bacterial fermentation, delivered through the gut-liver axis, significantly contribute to lipid biosynthesis. We therefore hypothesized that dysbiotic insults like antibiotic treatment not only affect gut microbiota, but also impair hepatic lipid synthesis and liver regeneration.

View Article and Find Full Text PDF

The content of polyunsaturated fatty acids (PUFA) in complex lipids essentially influences their physicochemical properties and has been linked to health and disease. To investigate the incorporation of dietary PUFA in the human plasma lipidome, we quantified glycerophospholipids (GPL), sphingolipids, and sterols using electrospray ionization coupled to tandem mass spectrometry of plasma samples obtained from a dietary intervention study. Healthy individuals received foods supplemented with different vegetable oils rich in PUFA.

View Article and Find Full Text PDF

Objective: Lipidomic changes were causally linked to metabolic diseases, but the scenario for colorectal cancer (CRC) is less clear. We investigated the CRC lipidome for putative tumor-specific alterations through analysis of 3 independent retrospective patient cohorts from 2 clinical centers, to derive a clinically useful signature.

Design: Quantitative comprehensive lipidomic analysis was performed using direct infusion electrospray ionization coupled with tandem mass spectrometry (ESI-MS/MS) and high-resolution mass spectrometry (HR-MS) on matched nondiseased mucosa and tumor tissue in a discovery cohort (n = 106).

View Article and Find Full Text PDF

Gut microbiota significantly influence the plasma and liver lipidome. An interconnecting metabolite is acetate generated after degradation and fermentation of dietary fiber by the gut microbiota, which is metabolized in the liver into longer chain fatty acids and complex lipids reaching the circulation. Whether these systemic changes are accompanied by alternations of the intestinal lipidome is unclear.

View Article and Find Full Text PDF

is a newly described mouse gut bacterium which metabolizes cholic acid (CA) to deoxycholic acid (DCA) via 7α-dehydroxylation. Although bile acids influence metabolic and inflammatory responses, few models exist for studying their metabolism and impact on the host. Mice were colonized from birth with the simplified community Oligo-MM with or without .

View Article and Find Full Text PDF

Ion mobility coupling to mass spectrometry facilitates enhanced identification certitude. Further coupling to liquid chromatography results in multi-dimensional analytical methods, especially suitable for complex matrices with structurally similar compounds. Modified nucleosides represent a large group of very similar members linked to aberrant proliferation.

View Article and Find Full Text PDF