Publications by authors named "Johannes Petzoldt"

Reflectron-based time-of-flight analyzers rely on subnanosecond detector time response to achieve acceptable resolving power for low-mid-mass, multiple-ion peaks. With the adoption of multireflection analyzers, order of magnitude longer folded ion paths relax restrictions on detector response time, allowing implementation of new technologies that greatly improve dynamic range, detector lifetime, and ion detection efficiency. A detection system is presented, integrated into a multireflection analyzer, that combines 10 keV postacceleration and focal plane correction with a unique BxE focusing, optically coupled detector, preamplification, and dual-channel digitization.

View Article and Find Full Text PDF

Space charge effects are the Achilles' heel of all high-resolution ion optical devices. In time-of-flight mass analyzers, these may manifest as reduction of resolving power, mass measurement shift, peak coalescence, and/or transmission losses, while highly sensitive modern ion sources and injection devices ensure that such limits are easily exceeded. Space charge effects have been investigated, by experiment and simulation study, for the astral multi-reflection analyzer, incorporating ion focusing via a pair of converging ion mirrors, and fed by a pulsed extraction ion trap.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here we present the narrow-window data-independent acquisition (nDIA) strategy consisting of high-resolution MS1 scans with parallel tandem MS (MS/MS) scans of ~200 Hz using 2-Th isolation windows, dissolving the differences between data-dependent and -independent methods. This is achieved by pairing a quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer which provides >200-Hz MS/MS scanning speed, high resolving power and sensitivity, and low-ppm mass accuracy.

View Article and Find Full Text PDF

The growing trend toward high-throughput proteomics demands rapid liquid chromatography-mass spectrometry (LC-MS) cycles that limit the available time to gather the large numbers of MS/MS fragmentation spectra required for identification. Orbitrap analyzers scale performance with acquisition time and necessarily sacrifice sensitivity and resolving power to deliver higher acquisition rates. We developed a new mass spectrometer that combines a mass-resolving quadrupole, the Orbitrap, and the novel Asymmetric Track Lossless (Astral) analyzer.

View Article and Find Full Text PDF

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data-independent acquisition, the Thermo Scientific Orbitrap Astral mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific Orbitrap mass spectrometers, which have long been the gold standard for high-resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high-quality quantitative measurements across a wide dynamic range.

View Article and Find Full Text PDF

We evaluate the quantitative performance of the newly released Asymmetric Track Lossless (Astral) analyzer. Using data independent acquisition, the Thermo Scientific™ Orbitrap™ Astral™ mass spectrometer quantifies 5 times more peptides per unit time than state-of-the-art Thermo Scientific™ Orbitrap™ mass spectrometers, which have long been the gold standard for high resolution quantitative proteomics. Our results demonstrate that the Orbitrap Astral mass spectrometer can produce high quality quantitative measurements across a wide dynamic range.

View Article and Find Full Text PDF

Purpose: Uncertainty in computed tomography (CT)-based range prediction substantially impairs the accuracy of proton therapy. Direct determination of the stopping-power ratio (SPR) from dual-energy CT (DECT) has been proposed (DirectSPR), and initial validation studies in phantoms and biological tissues have proven a high accuracy. However, a thorough validation of range prediction in patients has not yet been achieved by any means.

View Article and Find Full Text PDF

Objectives: Prompt gamma (PG) imaging has previously been demonstrated for use in proton range verification of a brain treatment with a homogeneous target region. In this study, the feasibility of PG imaging to detect anatomic change within a heterogeneous region is presented.

Methods: A prompt gamma camera recorded several fractions of a patient treatment to the base of skull.

View Article and Find Full Text PDF

Purpose: Prompt-gamma imaging (PGI)-based range verification has been successfully implemented in clinical proton therapy recently and its sensitivity to detect treatment deviations is currently investigated. The cause of treatment deviations can be multiple - for example, computed tomography (CT)-based range prediction, patient setup, and anatomical changes. Hence, it would be beneficial, if PGI-based verification would not only detect a treatment deviation but would also be able to directly identify its most probable source.

View Article and Find Full Text PDF

In proton therapy, patients benefit from the precise deposition of the dose in the tumor volume due to the interaction of charged particles with matter. Currently, the determination of the beam range in the patient's body during the treatment is not a clinical standard. This lack causes broad safety margins around the tumor, which limits the potential of proton therapy.

View Article and Find Full Text PDF

Background And Purpose: A prompt-gamma imaging (PGI) slit-camera was recently applied successfully in clinical proton treatments using pencil beam scanning (PBS) and double scattering (DS). However, its full capability under clinical conditions has still to be systematically evaluated. Here, the performance of the slit-camera is systematically assessed in well-defined error scenarios using realistic treatment deliveries to an anthropomorphic head phantom.

View Article and Find Full Text PDF

Proton beams are promising means for treating tumors. Such charged particles stop at a defined depth, where the ionization density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimizes the damage to normal tissue compared to photon therapy.

View Article and Find Full Text PDF

Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems.

View Article and Find Full Text PDF

Proton and ion beams open up new vistas for the curative treatment of tumors, but adequate technologies for monitoring the compliance of dose delivery with treatment plans in real time are still missing. Range assessment, meaning the monitoring of therapy-particle ranges in tissue during dose delivery (treatment), is a continuous challenge considered a key for tapping the full potential of particle therapies. In this context the paper introduces an unconventional concept of range assessment by prompt-gamma timing (PGT), which is based on an elementary physical effect not considered so far: therapy particles penetrating tissue move very fast, but still need a finite transit time--about 1-2 ns in case of protons with a 5-20 cm range--from entering the patient's body until stopping in the target volume.

View Article and Find Full Text PDF