Publications by authors named "Johannes Partzsch"

Introduction: Multi-channel electrophysiology systems for recording of neuronal activity face significant data throughput limitations, hampering real-time, data-informed experiments. These limitations impact both experimental neurobiology research and next-generation neuroprosthetics.

Methods: We present a novel solution that leverages the high integration density of 22nm fully-depleted silicon-on-insulator technology to address these challenges.

View Article and Find Full Text PDF

Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in electrophysiological methods that is pushing the frontiers of intelligent neural interfacing and signal processing technologies. At the forefront of these new technologies, artificial and biological neural networks are tightly coupled, offering a novel "biohybrid" experimental framework for engineers and neurophysiologists.

View Article and Find Full Text PDF

Developing technologies for coupling neural activity and artificial neural components, is key for advancing neural interfaces and neuroprosthetics. We present a biohybrid experimental setting, where the activity of a biological neural network is coupled to a biomimetic hardware network. The implementation of the hardware network (denoted NeuroSoC) exhibits complex dynamics with a multiplicity of time-scales, emulating 2880 neurons and 12.

View Article and Find Full Text PDF

Advances in neuroscience uncover the mechanisms employed by the brain to efficiently solve complex learning tasks with very limited resources. However, the efficiency is often lost when one tries to port these findings to a silicon substrate, since brain-inspired algorithms often make extensive use of complex functions, such as random number generators, that are expensive to compute on standard general purpose hardware. The prototype chip of the second generation SpiNNaker system is designed to overcome this problem.

View Article and Find Full Text PDF

The memory requirement of deep learning algorithms is considered incompatible with the memory restriction of energy-efficient hardware. A low memory footprint can be achieved by pruning obsolete connections or reducing the precision of connection strengths after the network has been trained. Yet, these techniques are not applicable to the case when neural networks have to be trained directly on hardware due to the hard memory constraints.

View Article and Find Full Text PDF

Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused.

View Article and Find Full Text PDF

Synaptic dynamics, such as long- and short-term plasticity, play an important role in the complexity and biological realism achievable when running neural networks on a neuromorphic IC. For example, they endow the IC with an ability to adapt and learn from its environment. In order to achieve the millisecond to second time constants required for these synaptic dynamics, analog subthreshold circuits are usually employed.

View Article and Find Full Text PDF

A switched-capacitor (SC) neuromorphic system for closed-loop neural coupling in 28 nm CMOS is presented, occupying 600 um by 600 um. It offers 128 input channels (i.e.

View Article and Find Full Text PDF

The implementation of synaptic plasticity in neural simulation or neuromorphic hardware is usually very resource-intensive, often requiring a compromise between efficiency and flexibility. A versatile, but computationally-expensive plasticity mechanism is provided by the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm. Building upon Bayesian statistics, and having clear links to biological plasticity processes, the BCPNN learning rule has been applied in many fields, ranging from data classification, associative memory, reward-based learning, probabilistic inference to cortical attractor memory networks.

View Article and Find Full Text PDF

Efficient Analog-Digital Converters (ADC) are one of the mainstays of mixed-signal integrated circuit design. Besides the conventional ADCs used in mainstream ICs, there have been various attempts in the past to utilize neuromorphic networks to accomplish an efficient crossing between analog and digital domains, i.e.

View Article and Find Full Text PDF

In this article, we analyse under which conditions an abstract model of connectivity could actually be embedded geometrically in a mammalian brain. To this end, we adopt and extend a method from circuit design called Rent's Rule to the highly branching structure of cortical connections. Adding on recent approaches, we introduce the concept of a limiting Rent characteristic that captures the geometrical constraints of a cortical substrate on connectivity.

View Article and Find Full Text PDF

State-of-the-art large-scale neuromorphic systems require sophisticated spike event communication between units of the neural network. We present a high-speed communication infrastructure for a waferscale neuromorphic system, based on application-specific neuromorphic communication ICs in an field programmable gate arrays (FPGA)-maintained environment. The ICs implement configurable axonal delays, as required for certain types of dynamic processing or for emulating spike-based learning among distant cortical areas.

View Article and Find Full Text PDF

With the various simulators for spiking neural networks developed in recent years, a variety of numerical solution methods for the underlying differential equations are available. In this article, we introduce an approach to systematically assess the accuracy of these methods. In contrast to previous investigations, our approach focuses on a completely deterministic comparison and uses an analytically solved model as a reference.

View Article and Find Full Text PDF

In this article, we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware experts.

View Article and Find Full Text PDF

In recent years, neuromorphic hardware systems have significantly grown in size. With more and more neurons and synapses integrated in such systems, the neural connectivity and its configurability have become crucial design constraints. To tackle this problem, we introduce a generic extended graph description of connection topologies that allows a systematical analysis of connectivity in both neuromorphic hardware and neural network models.

View Article and Find Full Text PDF

Classically, action-potential-based learning paradigms such as the Bienenstock-Cooper-Munroe (BCM) rule for pulse rates or spike timing-dependent plasticity for pulse pairings have been experimentally demonstrated to evoke long-lasting synaptic weight changes (i.e., plasticity).

View Article and Find Full Text PDF

When entering a synapse, presynaptic pulse trains are filtered according to the recent pulse history at the synapse and also with respect to their own pulse time course. Various behavioral models have tried to reproduce these complex filtering properties. In particular, the quantal model of neurotransmitter release has been shown to be highly selective for particular presynaptic pulse patterns.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontisbl29keor9m5fsgn2ja7cl0loinfkj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once