Annu Int Conf IEEE Eng Med Biol Soc
June 2012
This work presents an investigation of the potential benefits of customizing the analysis of long-term ECG signals, collected from individuals using wearable sensors, by incorporating small amount of data from these individuals in the training set of our classifiers. The global training dataset selected was from the MIT-BIH Arrhythmias Database. This proposal is validated on long-term ECG recordings collected via wearable technology in unsupervised environments, as well on the MIT-BIH Normal Sinus Rhythm Database.
View Article and Find Full Text PDF