Beilstein J Nanotechnol
December 2019
In this letter, we report on the ability of functional fusion proteins presenting a lytic gamma peptide, to promote interactions with HeLa cells and delivery of large hybrid nanostructures.
View Article and Find Full Text PDFDetailed steady-state and time-resolved fluorescence quenching measurements give deep insight into ion transport through nanometer thick diblock copolymer membranes, which were assembled as biocompatible shell material around CdSe/CdS quantum dot in quantum rods. We discuss the role of polymer chain length, intermolecular cross-linking and nanopore formation by analysing electron transfer processes from the photoexcited QDQRs to Cu(II) ions, which accumulate in the polymer membrane. Fluorescence investigations on single particle level additionally allow identifying ensemble inhomogeneities.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2015
Seeded emulsion polymerization is a powerful universal method to produce ultrasmall multifunctional magnetic nanohybrids. In a two-step procedure, iron oxide nanocrystals were initially encapsulated in a polystyrene (PS) shell and subsequently used as beads for a controlled assembly of elongated quantum dots/quantum rods (QDQRs). The synthesis of a continuous PS shell allows the whole construct to be fixed and the composition of the nanohybrid to be tuned.
View Article and Find Full Text PDFIn this short review, the main challenges in the use of hydrophobic nanoparticles in biomedical application are addressed. It is shown how to overcome the different issues by the use of a polymeric encapsulation system, based on an amphiphilic polyisoprene-block-poly(ethylene glycol) diblock copolymer. On the basis of this simple molecule, the development of a versatile and powerful phase transfer strategy is summarized, focusing on the main advantages like the adjustable size, the retained properties, the excellent shielding and the diverse functionalization properties of the encapsulated nanoparticles.
View Article and Find Full Text PDFThe combination of superstructure-forming amphiphilic block copolymers and superparamagnetic iron oxide nanoparticles produces new nano/microcomposites with unique size-dependent properties. Herein, we demonstrate the controlled clustering of superparamagnetic iron oxide nanoparticles (SPIOs) ranging from discretely encapsulated SPIOs to giant clusters, containing hundreds or even more particles, using an amphiphilic polyisoprene-block-poly(ethylene glycol) diblock copolymer. Within these clusters, the SPIOs interact with each other and show new collective properties, neither obtainable with singly encapsulated nor with the bulk material.
View Article and Find Full Text PDFThe phase transfer of fluorescent CdSe based quantum dots (QDs) while retaining their properties and offering some advantages concerning the stability and functionalization characteristics is an important and intensively investigated field of research. Here we report how to tune and control the properties of CdSe/CdS/ZnS core-shell-shell QDs in water, using poly(isoprene-block-ethylene oxide) (PI-b-PEO) as a versatile system of amphiphilic diblock copolymers for the micellular encapsulation of nanoparticles (NPs). We show the synthesis of a novel PI-b-(PEO)2 miktoarm star polymer and how this different architecture besides the variation of the polymers' molecular weight gives us the opportunity to control the size of the built constructs in water between 24 and 53 nm.
View Article and Find Full Text PDFHerein, we present a strategy for the glycoconjugation of nanoparticles (NPs), with a special focus on fluorescent quantum dots (QDs), recently described by us as "preassembly" approach. Therein, prior to the encapsulation of diverse nanoparticles by an amphiphilic poly(isoprene)-b-poly(ethylene glycol) diblock copolymer (PI-b-PEG), the terminal PEG appendage was modified by covalently attaching a carbohydrate moiety using Huisgen-type click-chemistry. Successful functionalization was proven by NMR spectroscopy.
View Article and Find Full Text PDFNanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.
View Article and Find Full Text PDFHerein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff.
View Article and Find Full Text PDF