Publications by authors named "Johannes Oehlke"

Evidence is presented that components of fetal calf serum (FCS) can significantly enhance the splicing correction activity of peptide nucleic acids (PNA) in HeLa pLuc 705 cells. The effect proved more pronounced for PNAs bearing fluorescence tags and relies on the ability of specific components of FCS to mediate a mainly nonendocytotic intracellular delivery of PNA. Attempts to isolate and characterize the active serum components using PNA-loaded beads and nano-LC-ESI mass spectrometry revealed the growth-factor related inter-alpha-trypsin inhibitor and the adhesion protein fibronectin to be substantially responsible for the delivery activity of FCS.

View Article and Find Full Text PDF

The ability of peptide nucleic acids (PNA) to enter and to cross filter-grown MDCK, HEK and CHO cells was studied by means of a protocol based on capillary electrophoresis combined with laser-induced fluorescence detection. The used approach avoided possible errors encountered in protocols based on confocal laserscanning microscopy and FACS analysis. In contradiction to the commonly anticipated unability of PNA to cross biomembranes, extensive translocation of unmodified PNA into and across the investigated cell types was found.

View Article and Find Full Text PDF

A 12-mer peptide nucleic acid (PNA) directed against the nociceptin/orphanin FQ receptor mRNA was disulfide bridged with various peptides without and with cell-penetrating features. The cellular uptake and the antisense activity of these conjugates were assessed in parallel. Quantitation of the internalized PNA was performed by using an approach based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF).

View Article and Find Full Text PDF

Peptide nucleic acids (PNAs) have shown great promise as potential antisense drugs; however, poor cellular delivery limits their applications. Improved delivery into mammalian cells and enhanced biological activity of PNAs have been achieved by coupling to cell-penetrating peptides (CPPs). Structural requirements for the shuttling ability of these peptides as well as structural properties of the conjugates such as the linker type and peptide position remained controversial, so far.

View Article and Find Full Text PDF

This study provides the first evidence that actin reorganization during AQP2 vesicular trafficking to the plasma membrane requires the functional involvement of ERM (ezrin/radixin/moesin) proteins cross-linking actin filaments with plasma membrane proteins. We report that forskolin stimulation was associated with a redistribution of moesin from intracellular sites to the cell cortex and with a concomitant enrichment of moesin in the particulate fraction in renal cells. Introduction of a peptide reproducing a short sequence of moesin within the binding site for F-actin induced all the key effects of forskolin stimulation, including a decrease in F-actin, translocation of endogenous moesin, and AQP2 translocation.

View Article and Find Full Text PDF

The influence of the peptide-to-cell ratio and energy depletion on uptake and degradation of the cell-penetrating peptides (CPPs) MAP (model amphipathic peptide) was investigated. The intracellular concentration of the CPPs, MAP and penetratin was monitored while varying the number of cells at fixed peptide concentration and incubation volume, or changing the concentration and incubation volume at fixed cell number. The uptake of CPPs was shown to be dependent on the peptide/cell ratio.

View Article and Find Full Text PDF

In the last decade many peptides have been shown to be internalized into various cell types by different, poorly characterized mechanisms. This review focuses on uptake studies with substance P (SP) aimed at unravelling the mechanism of peptide-induced mast cell degranulation, and on the characterization of the cellular uptake of designed KLA-derived model peptides. Studies on structure-activity relationships and receptor autoradiography failed to detect specific peptide receptors for the undecapeptide SP on mast cells.

View Article and Find Full Text PDF

In order to evaluate the ability of the cell-penetrating alpha-helical amphipathic model peptide KLALKLALKALKAALKLA-NH(2) (MAP) to deliver peptide nucleic acids (PNAs) into mammalian cells, MAP was covalently linked to the 12-mer PNA 5'-GGAGCAGGAAAG-3' directed against the mRNA of the nociceptin/orphanin FQ receptor. The cellular uptake of both the naked PNA and its MAP-conjugate was studied by means of capillary electrophoresis combined with laser-induced fluorescence detection, confocal laser scanning microscopy and fluorescence-activated cell sorting. Incubation with the fluorescein-labelled PNA-peptide conjugate led to three- and eightfold higher intracellular concentrations in neonatal rat cardiomyocytes and CHO cells, respectively, than found after exposure of the cells to the naked PNA.

View Article and Find Full Text PDF