Background And Hypothesis: Schizotypy is a risk phenotype for the psychosis spectrum and pilot studies suggest a biological continuum underlying this phenotype across health and disease. It is unclear whether this biological continuum might include brain structural associations in networks altered in schizophrenia spectrum disorders, such as the fronto-thalamo-striatal system or nodes of the default mode network, such as the precuneus.
Study Design: In this study, we analyze a large multi-center cohort of 673 nonclinical subjects phenotyped for schizotypal traits (using the Schizotypal Personality Questionnaire-Brief version) using tract-based spatial statistics of diffusion tensor imaging data, as well as voxel-based morphometry (VBM) analysis of regional brain volumes and gyrification analysis of early neurodevelopmental markers of cortical folding on T1-weighted MRI.
Background: Schizotypy is a putative risk phenotype for psychosis liability, but the overlap of its genetic architecture with schizophrenia is poorly understood.
Methods: We tested the hypothesis that dimensions of schizotypy (assessed with the SPQ-B) are associated with a polygenic risk score (PRS) for schizophrenia in a sample of 623 psychiatrically healthy, non-clinical subjects from the FOR2107 multi-centre study and a second sample of 1133 blood donors.
Results: We did not find correlations of schizophrenia PRS with either overall SPQ or specific dimension scores, nor with adjusted schizotypy scores derived from the SPQ (addressing inter-scale variance).
Schizotypy is a multidimensional risk phenotype distributed in the general population, constituting of subclinical, psychotic-like symptoms. It is associated with psychosis proneness, and several risk genes for psychosis are associated with schizotypy in non-clinical populations. Schizotypy might also modulate cognitive abilities as it is associated with attentional deficits in healthy subjects.
View Article and Find Full Text PDF