Publications by authors named "Johannes Mersch"

Functional electrical stimulation (FES) aims to improve the gait pattern in cases of weak foot dorsiflexion (foot lifter weakness) and, therefore, increase the liveability of people suffering from chronic diseases of the central nervous system, e.g., multiple sclerosis.

View Article and Find Full Text PDF

To further improve the performance of dielectric elastomer actuaotrs (DEAs), the development of novel elastomers with enhanced electro-mechanical properties is focal for the advancement of the technology. Hence, reliable techniques to assess their electro-mechanical performance are necessary. Characterization of the actuator materials is often achieved by fabricating circular DEAs with the pre-stretch of the membrane fixed by a stiff frame.

View Article and Find Full Text PDF

For signal transmission and sensing in stretchable structures for human motion monitoring or proprioception of soft robots, textiles with electronically conductive yarns are a promising option. Many recent publications employ silver-plated yarns in knits, braids, wovens for strain or pressure sensing purposes as well as heating fabrics or twisted string actuators. Silver-plated yarns are available in a wide range of base materials, yarn counts and twists.

View Article and Find Full Text PDF

There is increasing interest in the use of novel elastomers with inherent or modified advanced dielectric and mechanical properties, as components of dielectric elastomer actuators (DEA). This requires corresponding techniques to assess their electro-mechanical performance. A common way to test dielectric materials is the fabrication of actuators with pre-stretch fixed by a stiff frame.

View Article and Find Full Text PDF

Recently, there has been remarkable progress in the development of smart textiles, especially knitted strain sensors, to achieve reliable sensor signals. Stable and reliable electro-mechanical properties of sensors are essential for using textile-based sensors in medical applications. However, the challenges associated with significant hysteresis and low gauge factor (GF) values remain for using strain sensors for motion capture.

View Article and Find Full Text PDF

Soft actuators are a promising option for the advancing fields of human-machine interaction and dexterous robots in complex environments. Shape memory alloy wire actuators can be integrated into fiber rubber composites for highly deformable structures. For autonomous, closed-loop control of such systems, additional integrated sensors are necessary.

View Article and Find Full Text PDF

The preparation of intelligent structures for multiple smart applications such as soft-robotics, artificial limbs, etc., is a rapidly evolving research topic. In the present work, the preparation of a functional fabric, and its integration into a soft elastomeric matrix to develop an adaptive fiber-elastomer composite structure, is presented.

View Article and Find Full Text PDF

The concept of merging pre-processed textile materials with tailored mechanical properties into soft matrices is so far rarely used in the field of soft robotics. The herein presented work takes the advantages of textile materials in elastomer matrices to another level by integrating a material with highly anisotropic bending properties. A pre-fabricated textile material consisting of oriented carbon fibers is used as a stiff component to precisely control the mechanical behavior of the robotic setup.

View Article and Find Full Text PDF