The rheological properties of a particle suspension can be substantially altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The drastic change in the strength of these capillary suspensions arises due to the capillary forces, induced by the added liquid, leading to a percolating particle network. Using rheological scaling models, fractal dimensions are deduced from the yield stress and from oscillatory strain amplitude sweep data as function of the solid volume fraction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2017
Cracks, formed during the drying of particulate films, can reduce the effectiveness or even render products useless. We present a novel, generic approach to suppress crack formation in thin films made from hard particle suspensions, which are otherwise highly susceptible to cracking, using the capillary force between particles present when a trace amount of an immiscible liquid is added to a suspension. This secondary liquid preserves the particle cohesion, modifying the structure and increasing the drying rate.
View Article and Find Full Text PDFSmart capillary suspensions are used to fabricate macroporous solids with unique features regarding porosity and mechanical strength from a wide range of materials, including carbon layers and polyethylene membranes, even if sintering or high-temperature treatment is not feasible. High-strength porous ceramics are obtained, tailoring neck and pore shape via controlled deposition of fine particles at the sintering necks.
View Article and Find Full Text PDF