Publications by authors named "Johannes M Fink"

Recent quantum technologies have established precise quantum control of various microscopic systems using electromagnetic waves. Interfaces based on cryogenic cavity electro-optic systems are particularly promising, due to the direct interaction between microwave and optical fields in the quantum regime. Quantum optical control of superconducting microwave circuits has been precluded so far due to the weak electro-optical coupling as well as quasi-particles induced by the pump laser.

View Article and Find Full Text PDF

The ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices.

View Article and Find Full Text PDF

Solid-state microwave systems offer strong interactions for fast quantum logic and sensing but photons at telecom wavelength are the ideal choice for high-density low-loss quantum interconnects. A general-purpose interface that can make use of single photon effects requires < 1 input noise quanta, which has remained elusive due to either low efficiency or pump induced heating. Here we demonstrate coherent electro-optic modulation on nanosecond-timescales with only [Formula: see text] microwave input noise photons with a total bidirectional transduction efficiency of 8.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advances in quantum electromechanics and optomechanics have led to highly sensitive nanoscale mechanical devices that can measure tiny movements and handle single photons.
  • A major challenge has been achieving strong interaction between mechanical motion and electromagnetic fields without introducing additional noise or decoherence.
  • The presented electromechanical transducer combines a high-frequency hypersonic phononic crystal with a superconducting microwave circuit, which allows for efficient quantum-level mechanical signal conversion while minimizing decoherence effects.
View Article and Find Full Text PDF

We fabricate and characterize a microscale silicon opto-electromechanical system whose mechanical motion is coupled capacitively to an electrical circuit and optically via radiation pressure to a photonic crystal cavity. To achieve large electromechanical interaction strength, we implement an inverse shadow mask fabrication scheme which obtains capacitor gaps as small as 30 nm while maintaining a silicon surface quality necessary for minimizing optical loss. Using the sensitive optical read-out of the photonic crystal cavity, we characterize the linear and nonlinear capacitive coupling to the fundamental ω(m)/2π = 63 MHz in-plane flexural motion of the structure, showing that the large electromechanical coupling in such devices may be suitable for realizing efficient microwave-to-optical signal conversion.

View Article and Find Full Text PDF

We report the experimental observation and a theoretical explanation of collective suppression of linewidths for multiple superconducting qubits coupled to a good cavity. This demonstrates how strong qubit-cavity coupling can significantly modify the dephasing and dissipation processes that might be expected for individual qubits, and can potentially improve coherence times in many-body circuit QED.

View Article and Find Full Text PDF