Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFThe cytoplasm of most plant cells is connected by membrane-lined cell wall channels, the plasmodesmata (PD). Dynamic regulation of sugar, hormone, and protein diffusion through PD is essential for plant development and stress responses. Understanding this regulation requires knowledge of factors and mechanisms that control PD permeability through the modulation of callose levels in the cell wall around PD openings.
View Article and Find Full Text PDFThe leaf hyponasty response depends on tip-to-petiole auxin transport. This transport can happen through two parallel pathways: active trans-membrane transport mediated by PIN proteins and passive diffusion through plasmodesmata. A plant's ability to counteract potential shading by neighboring plants depends on transport of the hormone auxin.
View Article and Find Full Text PDFPlants secrete sugars from their roots into the soil, presumably to support beneficial plant-microbe interactions. Accordingly, manipulation of sugar secretion might be a viable strategy to enhance plant health and productivity. To evaluate the effect of increased root sugar secretion on plant performance and the soil microbiome, we overexpressed glucose and sucrose-specific membrane transporters in root epidermal cells of the model plant Arabidopsis thaliana.
View Article and Find Full Text PDFCell wall biogenesis is required for the production of seeds of higher plants. However, little is known about regulatory mechanisms underlying cell wall biogenesis during seed formation. Here we show a role for the phosphorylation of Arabidopsis cellulose synthase 1 (AtCESA1) in modulating pectin synthesis and methylesterification in seed coat mucilage.
View Article and Find Full Text PDFSucrose is the central unit of carbon and energy in plants. Active intercellular transport of sucrose is mediated by sucrose transporters (SUTs), genes for which have been found in the genomes of all land plants. However, they have only been assigned functions in angiosperm species.
View Article and Find Full Text PDFFungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi.
View Article and Find Full Text PDFPost-translational modifications (PTMs), including phosphorylation and persulfidation, regulate the activity of SNF1-RELATED PROTEIN KINASE2.6 (SnRK2.6).
View Article and Find Full Text PDFPlant acclimation and stress responses depend on the dynamic optimization of carbon balance between source and sink organs. This optimization also applies to the leaf export rate of photosynthetically produced sugars. So far, investigations into the molecular mechanisms of how the rate is controlled have focused on sugar transporters responsible for loading sucrose into the phloem sieve element-companion cell complex of leaf veins.
View Article and Find Full Text PDFThe green leaves of plants are optimised for carbon fixation and the production of sugars, which are used as central units of carbon and energy throughout the plant. However, there are physical limits to this optimisation that remain insufficiently understood. Here, quantitative anatomical analysis combined with mathematical modelling and sugar transport rate measurements were used to determine how effectively sugars are exported from the needle-shaped leaves of conifers in relation to leaf length.
View Article and Find Full Text PDFThe primary cell walls of plants provide mechanical strength while maintaining the flexibility needed for cell extension growth. Cell extension involves loosening the bonds between cellulose microfibrils, hemicelluloses and pectins. Pectins have been implicated in this process, but it remains unclear if this depends on the abundance of certain pectins, their modifications, and/or structure.
View Article and Find Full Text PDFLipid flippases of the P4 ATPase family establish phospholipid asymmetry in eukaryotic cell membranes and are involved in many essential cellular processes. The yeast contains five P4 ATPases, among which Dnf3p is poorly characterized. Here, we demonstrate that Dnf3p is a flippase that catalyzes translocation of major glycerophospholipids, including phosphatidylserine, towards the cytosolic membrane leaflet.
View Article and Find Full Text PDFFilamentous fungi are intensively used for producing industrial enzymes, including lignocellulases. Employing insoluble cellulose to induce the production of lignocellulases causes some drawbacks, e.g.
View Article and Find Full Text PDFThe plant hormone auxin serves as central regulator of growth and development. Auxin transporters in the plasma membrane are assumed to define tissue-level patterns of auxin distribution [1, 2]. However, auxin is small enough to diffuse through the plasmodesmata that connect neighboring cells [3], presenting an alternative pathway, whose contribution to auxin transport remained largely unexplored [4].
View Article and Find Full Text PDFAll multicellular organisms keep a balance between sink and source activities by controlling nutrient transport at strategic positions. In most plants, photosynthetically produced sucrose is the predominant carbon and energy source, whose transport from leaves to carbon sink organs depends on sucrose transporters. In the model plant , transport of sucrose into the phloem vascular tissue by SUCROSE TRANSPORTER 2 (SUC2) sets the rate of carbon export from source leaves, just like the SUC2 homologs of most crop plants.
View Article and Find Full Text PDFAll bacteria, fungi and plant cells are surrounded by a cell wall. This complex network of polysaccharides and glycoproteins provides mechanical support, defines cell shape, controls cell growth and influences the exchange of substances between the cell and its surroundings. Despite its name, the cell wall is a flexible, dynamic structure.
View Article and Find Full Text PDFSugars produced by photosynthesis in leaves get transported to other organs in the phloem vascular tissue. Three general mechanisms have been proposed for the loading of sugars into the phloem. These differ in the involvement of active transport across the phloem cell's membrane and their capacity for passive intercellular transport through plasmodesmata.
View Article and Find Full Text PDFStudying the phloem, through which organic substances are distributed between plant organs, is challenging because of its position deep inside the plant body and its sensitivity to manipulation. The speed of phloem transport can be studied by tracers. Here a protocol for the use of C-labeled photoassimilate to measure phloem transport speed is provided.
View Article and Find Full Text PDFMethods Mol Biol
March 2020
Sugars that are produced by photosynthesis in the leaves are transported in the phloem to heterotrophic sink tissues like roots, fruit, or flowers. Since sugars inside the highly specialized cells of the phloem move by bulk flow, it is the loading and unloading of sugars that determines the rates of allocation between organs. Here, a method is described for the relative quantification of sugars that are loaded into the phloem in leaves.
View Article and Find Full Text PDFEven though cell walls have essential functions for bacteria, fungi, and plants, tools to investigate their dynamic structure in living cells have been missing. Here, it is shown that changes in the intensity of the plasma membrane dye FM4-64 in response to extracellular quenchers depend on the nano-scale porosity of cell walls. The correlation of quenching efficiency and cell wall porosity is supported by tests on various cell types, application of differently sized quenchers, and comparison of results with confocal, electron, and atomic force microscopy images.
View Article and Find Full Text PDFThe export of photosynthetically produced sugars from leaves depends on plasmodesmatal transport of sugar molecules from mesophyll to phloem. Traditionally, the density of plasmodesmata (PD) along this phloem-loading pathway has been used as a defining feature of different phloem-loading types, with species proposed to have either many or few PD between the phloem and surrounding cells of the leaf. However, quantitative determination of PD density has rarely been performed.
View Article and Find Full Text PDFA number of recent studies identified hydrogen sulfide (HS) as an important signal in plant development and adaptation to environmental stress. HS has been proven to participate in ethylene-induced stomatal closure, but how the signaling pathways of HS and ethylene interact is still unclear. Here, we reveal how HS controls the feedback-regulation of ethylene biosynthesis in tomato () under osmotic stress.
View Article and Find Full Text PDFMost conifer species have needle-shaped leaves that are only a few centimeters long. In general, variation in leaf size has been associated with environmental factors, such as cold or drought stress. However, it has recently been proposed that sugar export efficiency is the limiting factor for conifer needle length, based on the results obtained using a mathematical model of phloem transport.
View Article and Find Full Text PDF