How do brains-biological or artificial-respond and adapt to an ever-changing environment? In a recent meeting, experts from various fields of neuroscience and artificial intelligence met to discuss internal world models in brains and machines, arguing for an interdisciplinary approach to gain deeper insights into the underlying mechanisms.
View Article and Find Full Text PDFDiverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes.
View Article and Find Full Text PDFTop-down projections convey a family of signals encoding previous experiences and current aims to the sensory neocortex, where they converge with external bottom-up information to enable perception and memory. Whereas top-down control has been attributed to excitatory pathways, the existence, connectivity, and information content of inhibitory top-down projections remain elusive. Here, we combine synaptic two-photon calcium imaging, circuit mapping, cortex-dependent learning, and chemogenetics in mice to identify GABAergic afferents from the subthalamic zona incerta as a major source of top-down input to the neocortex.
View Article and Find Full Text PDFAccurate perception of the environment is a constructive process that requires integration of external bottom-up sensory signals with internally generated top-down information. Decades of work have elucidated how sensory neocortex processes physical stimulus features. By contrast, examining how top-down information is encoded and integrated with bottom-up signals has been challenging using traditional neuroscience methods.
View Article and Find Full Text PDFNeuropeptides are the most diverse class of signaling molecules in the brain. Despite evidence for their involvement in several behavioral functions, the precise circuit elements and neuronal computations they control remain elusive. In this issue, Melzer et al.
View Article and Find Full Text PDFThe sensory neocortex is a critical substrate for memory. Despite its strong connection with the thalamus, the role of direct thalamocortical communication in memory remains elusive. We performed chronic in vivo two-photon calcium imaging of thalamic synapses in mouse auditory cortex layer 1, a major locus of cortical associations.
View Article and Find Full Text PDFCurr Opin Neurobiol
April 2021
Neocortical layer 1 is a major site of convergence for a variety of brain wide afferents carrying experience-dependent top-down information, which are integrated and processed in the apical tuft dendrites of pyramidal cells. Two types of local inhibitory interneurons, Martinotti cells and layer 1 interneurons, dominantly shape dendritic integration, and work from recent years has significantly advanced our understanding of the role of these interneurons in circuit plasticity and learning. Both cell types instruct plasticity in local pyramidal cells, and are themselves subject to robust plastic changes.
View Article and Find Full Text PDFLong-term memory has been associated with morphological changes in the brain, which in turn tightly correlate with changes in synaptic efficacy. Such plasticity is proposed to rely on dendritic spines as a neuronal canvas on which these changes can occur. Given the key role of actin cytoskeleton dynamics in spine morphology, major regulating factors of this process such as Cofilin 1 (Cfl1) and LIM kinase (LIMK), an inhibitor of Cfl1 activity, are prime molecular targets that may regulate dendritic plasticity.
View Article and Find Full Text PDFMemory of cues associated with threat is critical for survival and a leading model for elucidating how sensory information is linked to adaptive behavior by learning. Although the brain-wide circuits mediating auditory threat memory have been intensely investigated, it remains unclear whether the auditory cortex is critically involved. Here we use optogenetic activity manipulations in defined cortical areas and output pathways, viral tracing, pathway-specific in vivo 2-photon calcium imaging, and computational analyses of population plasticity to reveal that the auditory cortex is selectively required for conditioning to complex stimuli, whereas the adjacent temporal association cortex controls all forms of auditory threat memory.
View Article and Find Full Text PDFMemorizing significant locations in the environment is a fundamental capacity of the brain. In this issue, Turi et al. (2019) present multidisciplinary evidence for a critical involvement of disinhibitory interneurons in hippocampal CA1 in this process.
View Article and Find Full Text PDFA wealth of data has elucidated the mechanisms by which sensory inputs are encoded in the neocortex, but how these processes are regulated by the behavioral relevance of sensory information is less understood. Here, we focus on neocortical layer 1 (L1), a key location for processing of such top-down information. Using Neuron-Derived Neurotrophic Factor (NDNF) as a selective marker of L1 interneurons (INs) and in vivo 2-photon calcium imaging, electrophysiology, viral tracing, optogenetics, and associative memory, we find that L1 NDNF-INs mediate a prolonged form of inhibition in distal pyramidal neuron dendrites that correlates with the strength of the memory trace.
View Article and Find Full Text PDFOptogenetics revolutionizes basic research in neuroscience and cell biology and bears potential for medical applications. We develop mutants leading to a unifying concept for the construction of various channelrhodopsins with fast closing kinetics. Due to different absorption maxima these channelrhodopsins allow fast neural photoactivation over the whole range of the visible spectrum.
View Article and Find Full Text PDFInhibitory interneurons govern virtually all computations in neocortical circuits and are in turn controlled by neuromodulation. While a detailed understanding of the distinct marker expression, physiology, and neuromodulator responses of different interneuron types exists for rodents and recent studies have highlighted the role of specific interneurons in converting rapid neuromodulatory signals into altered sensory processing during locomotion, attention, and associative learning, it remains little understood whether similar mechanisms exist in human neocortex. Here, we use whole-cell recordings combined with agonist application, transgenic mouse lines, in situ hybridization, and unbiased clustering to directly determine these features in human layer 1 interneurons (L1-INs).
View Article and Find Full Text PDFAlthough a wealth of data have elucidated the structure and physiology of neuronal circuits, we still only have a very limited understanding of how behavioral learning is implemented at the network level. An emerging crucial player in this implementation is disinhibition--a transient break in the balance of excitation and inhibition. In contrast to the widely held view that the excitation/inhibition balance is highly stereotyped in cortical circuits, recent findings from behaving animals demonstrate that salient events often elicit disinhibition of projection neurons that favors excitation and thereby enhances their activity.
View Article and Find Full Text PDFThe transition to scientific independence as a principal investigator (PI) can seem like a daunting and mysterious process to postdocs and students - something that many aspire to while at the same time wondering how to achieve this goal and what being a PI really entails. The FENS Kavli Network of Excellence (FKNE) is a group of young faculty who have recently completed this step in various fields of neuroscience across Europe. In a series of opinion pieces from FKNE scholars, we aim to demystify this process and to offer the next generation of up-and-coming PIs some advice and personal perspectives on the transition to independence, starting here with guidance on how to get hired to your first PI position.
View Article and Find Full Text PDFAcetylcholine is a crucial neuromodulator for attention, learning and memory. Release of acetylcholine in primary sensory cortex enhances processing of sensory stimuli, and many in vitro studies have pinpointed cellular mechanisms that could mediate this effect. In contrast, how cholinergic modulation shapes the function of intact circuits during behaviour is only beginning to emerge.
View Article and Find Full Text PDFLearning is mediated by experience-dependent plasticity in neuronal circuits. Activity in neuronal circuits is tightly regulated by different subtypes of inhibitory interneurons, yet their role in learning is poorly understood. Using a combination of in vivo single-unit recordings and optogenetic manipulations, we show that in the mouse basolateral amygdala, interneurons expressing parvalbumin (PV) and somatostatin (SOM) bidirectionally control the acquisition of fear conditioning--a simple form of associative learning--through two distinct disinhibitory mechanisms.
View Article and Find Full Text PDFMemories are acquired and encoded within large-scale neuronal networks spanning different brain areas. The anatomical and functional specificity of such long-range interactions and their role in learning is poorly understood. The amygdala and the medial prefrontal cortex (mPFC) are interconnected brain structures involved in the extinction of conditioned fear.
View Article and Find Full Text PDFLearning causes a change in how information is processed by neuronal circuits. Whereas synaptic plasticity, an important cellular mechanism, has been studied in great detail, we know much less about how learning is implemented at the level of neuronal circuits and, in particular, how interactions between distinct types of neurons within local networks contribute to the process of learning. Here we show that acquisition of associative fear memories depends on the recruitment of a disinhibitory microcircuit in the mouse auditory cortex.
View Article and Find Full Text PDFThe central amygdala (CEA), a nucleus predominantly composed of GABAergic inhibitory neurons, is essential for fear conditioning. How the acquisition and expression of conditioned fear are encoded within CEA inhibitory circuits is not understood. Using in vivo electrophysiological, optogenetic and pharmacological approaches in mice, we show that neuronal activity in the lateral subdivision of the central amygdala (CEl) is required for fear acquisition, whereas conditioned fear responses are driven by output neurons in the medial subdivision (CEm).
View Article and Find Full Text PDFFear extinction is a form of inhibitory learning that allows for the adaptive control of conditioned fear responses. Although fear extinction is an active learning process that eventually leads to the formation of a consolidated extinction memory, it is a fragile behavioural state. Fear responses can recover spontaneously or subsequent to environmental influences, such as context changes or stress.
View Article and Find Full Text PDFFront Synaptic Neurosci
July 2011
While it has been appreciated for decades that synapse location in the dendritic tree has a powerful influence on signal processing in neurons, the role of dendritic synapse location on the induction of long-term synaptic plasticity has only recently been explored. Here, we review recent work revealing how learning rules for spike-timing-dependent plasticity (STDP) in cortical neurons vary with the spatial location of synaptic input. A common principle appears to be that proximal synapses show conventional STDP, whereas distal inputs undergo plasticity according to novel learning rules.
View Article and Find Full Text PDFDepending on the arousal state, neuronal networks display discrete activity patterns that profoundly affect information processing in the brain. In this issue of Neuron, Kurotani et al. report bidirectional modification of inhibition by oscillatory patterns in the neocortex; a mechanism likely to control the impact of these neurons in a state-dependent fashion.
View Article and Find Full Text PDF