Purpose To investigate if aortic stiffening as detected with cardiac MRI is an early phenomenon in the development and progression of heart failure with preserved ejection fraction (HFpEF). Materials and Methods Both clinical and preclinical studies were performed. The clinical study was a secondary analysis of the prospective HFpEF stress trial (August 2017 through September 2019) and included 48 participants (median age, 69 years [range, 65-73 years]; 33 female, 15 male) with noncardiac dyspnea (NCD, = 21), overt HFpEF at rest (pulmonary capillary wedge pressure [PCWP] ≥ 15 mm Hg, = 14), and masked HFpEF at rest diagnosed during exercise stress (PCWP ≥ 25 mm Hg, = 13) according to right heart catheterization.
View Article and Find Full Text PDFBackground: It remains unknown to what extent intrinsic atrial cardiomyopathy or left ventricular diastolic dysfunction drive atrial remodeling and functional failure in heart failure with preserved ejection fraction (HFpEF). Computational 3-dimensional (3D) models fitted to cardiovascular magnetic resonance allow state-of-the-art anatomic and functional assessment, and we hypothesized to identify a phenotype linked to HFpEF.
Methods: Patients with exertional dyspnea and diastolic dysfunction on echocardiography (E/e', >8) were prospectively recruited and classified as HFpEF or noncardiac dyspnea based on right heart catheterization.
Int J Cardiovasc Imaging
July 2024
Heart failure (HF) is a heterogenous disease requiring precise diagnostics and knowledge of pathophysiological processes. Since structural and functional imaging data are scarce we hypothesized that cardiac magnetic resonance (CMR)-based analyses would provide accurate characterization and mechanistic insights into different HF groups comprising preserved (HFpEF), mid-range (HFmrEF) and reduced ejection fraction (HFrEF). 22 HFpEF, 17 HFmrEF and 15 HFrEF patients as well as 19 healthy volunteers were included.
View Article and Find Full Text PDFAims: This study aimed to identify the impact of increased epicardial adipose tissue (EAT) and its regional distribution on cardiac function in patients with diastolic dysfunction.
Methods And Results: Sixty-eight patients with exertional dyspnoea (New York Heart Association ≥II), preserved ejection fraction (≥50%), and diastolic dysfunction (E/e' ≥ 8) underwent rest and stress right heart catheterization, transthoracic echocardiography, and cardiovascular magnetic resonance (CMR). EAT volumes were depicted from CMR short-axis stacks.
Int J Cardiol
June 2024
Background: With emerging therapies, early diagnosis of heart failure with preserved ejection fraction (HFpEF) comes to the fore. Whilst the reference standard of exercise-stress right heart catheterisation is well established, the clinical routine struggles between feasibility of exercise-stress and diagnostic accuracy of available tests.
Methods: The HFpEF Stress Trial (DZHK-17) prospectively enrolled 75 patients with exertional dyspnoea and echocardiographic signs of diastolic dysfunction (E/e' > 8) who underwent simultaneous rest and exercise-stress echocardiography and right heart catheterisation (RHC).
Background: Identification of increased pulmonary capillary wedge pressure (PCWP) by right heart catheterization (RHC) is the reference standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF). Recently, cardiovascular magnetic resonance (CMR) imaging estimation of PCWP at rest was introduced as a non-invasive alternative. Since many patients are only identified during physiological exercise-stress, we hypothesized that novel exercise-stress CMR-derived PCWP emerges superior compared to its assessment at rest.
View Article and Find Full Text PDFBackground: Accurate risk stratification is important to improve patient selection and outcome of patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). As epicardial adipose tissue (EAT) is discussed to be involved in cardiovascular disease, it could be useful as a marker of poor prognosis in patients with severe AS undergoing TAVR.
Methods: A total of 416 patients diagnosed with severe AS by transthoracic echocardiography were assigned for TAVR and enrolled for systematic assessment.
This methodological study aimed to validate the cardiac output (CO) measured by exercise-stress real-time phase-contrast cardiovascular magnetic resonance imaging (CMR) in patients with heart failure and preserved ejection fraction (HFpEF). 68 patients with dyspnea on exertion (NYHA ≥ II) and echocardiographic signs of diastolic dysfunction underwent rest and exercise stress right heart catheterization (RHC) and CMR within 24 h. Patients were diagnosed as overt HFpEF (pulmonary capillary wedge pressure (PCWP) ≥ 15mmHg at rest), masked HFpEF (PCWP ≥ 25mmHg during exercise stress but < 15mmHg at rest) and non-cardiac dyspnea.
View Article and Find Full Text PDFCardiovascular magnetic resonance (CMR)-derived hemodynamic force (HDF) analyses have been introduced recently enabling more in-depth cardiac function evaluation. Inter-study reproducibility is important for a widespread clinical use but has not been quantified for this novel CMR post-processing tool yet. Serial CMR imaging was performed in 11 healthy participants in a median interval of 63 days (range 49-87).
View Article and Find Full Text PDFClin Res Cardiol
March 2024
Background: The diagnosis of heart failure with preserved ejection fraction (HFpEF) remains challenging. Recently, the HFpEF Stress Trial demonstrated feasibility and accuracy of non-invasive cardiovascular magnetic resonance (CMR) real-time (RT) exercise-stress atrial function imaging for early identification of HFpEF. However, no outcome data have yet been presented.
View Article and Find Full Text PDFBackground: Myocardial deformation assessment by cardiovascular magnetic resonance-feature tracking (CMR-FT) has incremental prognostic value over volumetric analyses. Recently, atrial functional analyses have come to the fore. However, to date recommendations for optimal resolution parameters for accurate atrial functional analyses are still lacking.
View Article and Find Full Text PDFBackground: Strain analyses derived from cardiovascular magnetic resonance-feature tracking (CMR-FT) provide incremental prognostic benefit in patients sufferring from acute myocardial infarction (AMI). This study aims to evaluate and revalidate previously reported prognostic implications of comprehensive strain analyses in a large independent cohort of patients with ST-elevation myocardial infarction (STEMI).
Methods: Overall, 566 STEMI patients enrolled in the CONDITIONING-LIPSIA trial including pre- and/or postconditioning treatment in addition to conventional percutaneous coronary intervention underwent CMR imaging in median 3 days after primary percutaneous coronary intervention.
Background: Heart failure with preserved ejection fraction (HFpEF) has been observed to have a twice as high prevalence in women compared to men with similar predisposing risk factors between both sexes.
Objectives: This study aimed to identify sex-specific pathophysiological features in HFpEF using rest and exercise stress right heart catheterization (RHC), echocardiography and cardiovascular magnetic resonance imaging (CMR).
Methods: Seventy-five patients with exertional dyspnea, preserved ejection fraction (EF) (≥50%), and signs of diastolic dysfunction on echocardiography were prospectively recruited in the HFpEF Stress Trial.
Aims: There is evidence to suggest that the subtype of aortic stenosis (AS), the degree of myocardial fibrosis (MF), and level of aortic valve calcification (AVC) are associated with adverse cardiac outcome in AS. Because little is known about their respective contribution, we sought to investigate their relative importance and interplay as well as their association with adverse cardiac events following transcatheter aortic valve replacement (TAVR).
Methods And Results: One hundred consecutive patients with severe AS and indication for TAVR were prospectively enrolled between January 2017 and October 2018.
Background: Recently, a novel left atrioventricular coupling index (LACI) has been introduced providing prognostic value to predict cardiovascular events beyond common risk factors in patients without cardiovascular disease. Since data on cardiovascular magnetic resonance (CMR)-derived LACI in patients following acute myocardial infarction (AMI) are scarce, we aimed to assess the diagnostic and prognostic implications of LACI in a large AMI patient cohort.
Methods: In total, 1046 patients following AMI were included.
Aims: The REDUCE-LAP II trial demonstrated adverse outcomes after interatrial shunt device (IASD) placement in heart failure with preserved ejection fraction (HFpEF) attributed to latent pulmonary vascular disease (PVD). We hypothesized that exercise stress cardiovascular magnetic resonance (CMR) imaging could provide non-invasive characterization of cardiac and pulmonary physiology for improved patient selection.
Methods And Results: The HFpEF-Stress trial prospectively enrolled 75 patients with exertional dyspnoea and diastolic dysfunction.
Transcatheter aortic valve replacement (TAVR) has become the standard treatment for aortic stenosis in older patients. It increasingly relies on accurate pre-procedural planning using multidetector computed tomography (MDCT). Since little is known about the required competence levels for MDCT analyses, we comprehensively assessed MDCT TAVR planning reproducibility and accuracy with regard to valve selection in various healthcare workers.
View Article and Find Full Text PDFBackground Context: Recent findings revealed a correlation between vertebral bone quality based on T1-weighted (VBQ) magnetic resonance imaging (MRI) and volumetric bone mass density (vBMD) measured using quantitative computerized tomography. The coherence of VBQ for other MRI sequences, such as T2 or short tau inversion recovery (STIR), has not been examined. The combination of different VBQs has not been studied.
View Article and Find Full Text PDFAims: Deformation imaging enables optimized risk prediction following acute myocardial infarction (AMI). However, costly and time-consuming post processing has hindered widespread clinical implementation. Since manual left-ventricular long-axis strain (LV LAS) has been successfully proposed as a simple alternative for LV deformation imaging, we aimed at the validation of left-atrial (LA) LAS.
View Article and Find Full Text PDFRadiologie (Heidelb)
November 2022
Background: Myocardial infarction with nonobstructive coronary arteries (MINOCA) accounts for 5-10% of all presentations of acute myocardial infarction.
Objectives: To outline the role of cardiovascular magnetic resonance (CMR) in patients with suspected MINOCA.
Materials And Methods: Current guidelines for the use of CMR in suspected MINOCA are summarized.
Background: The risk of myocarditis after mRNA vaccination against COVID-19 has emerged recently. Current evidence suggests that young male patients are predominantly affected. In the majority of the cases, only mild symptoms were observed.
View Article and Find Full Text PDFBackground: Since cardiovascular magnetic resonance (CMR) imaging allows comprehensive quantification of both myocardial function and structure we aimed to assess myocardial remodeling processes in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR).
Methods: CMR imaging was performed in 40 patients with severe AS before and 1 year after TAVR. Image analyses comprised assessments of myocardial volumes, CMR-feature-tracking based atrial and ventricular strain, myocardial T1 mapping, extracellular volume fraction-based calculation of left ventricular (LV) cellular and matrix volumes, as well as ischemic and non-ischemic late gadolinium enhancement analyses.
Feasibility of automated volume-derived cardiac functional evaluation has successfully been demonstrated using cardiovascular magnetic resonance (CMR) imaging. Notwithstanding, strain assessment has proven incremental value for cardiovascular risk stratification. Since introduction of deformation imaging to clinical practice has been complicated by time-consuming post-processing, we sought to investigate automation respectively.
View Article and Find Full Text PDF(1) Background: Thermal ablation has been demonstrated to affect the bone growth of osteoid osteoma in adolescents. Growth modulation due to thermal heat in children is conceivable, but has not yet been established. We used lamb extremities as a preclinical model to examine the effect of thermal ablation on growth plates in order to evaluate its potential for axial or longitudinal growth modulation in pediatric patients.
View Article and Find Full Text PDF