Seedling establishment is the first stage of crop productivity, and root phenotypes at seed emergence are critical to a successful start of shoot growth as well as for water and nutrient uptake. In this study, we investigate seedling establishment in winter wheat utilizing a newly developed workflow based on magnetic resonance imaging (MRI). Using the eight parents of the MAGIC (multi-parent advanced generation inter-cross) population we analysed the 4D root architecture of 288 individual seedlings grown in natural soils with plant neighbors over 3 d of development.
View Article and Find Full Text PDFWater content (WC) and dry matter content (DMC) are some of the most basic parameters to describe plant growth and yield, but are exceptionally difficult to measure non-invasively. Nuclear Magnetic Resonance (NMR) relaxometry may fill this methodological gap. It allows non-invasive detection of protons in liquids and solids, and on the basis of these measures, can be used to quantify liquid and dry matter contents of seeds and plants.
View Article and Find Full Text PDFIn this contribution we demonstrate a mobile, integrated MR plant imager that can be handled by one single person and used in the field. Key to the construction of it was a small and lightweight gradient amplifier, specifically tailored to our combination of magnet, gradient coils and the requirements of the desired pulse sequences. To allow imaging of branches and stems, an open C-shaped permanent magnet was used.
View Article and Find Full Text PDFThe spatial and temporal dynamics of root water uptake in nodal and seminal roots are poorly understood, especially in relation to root system development and aging. Here we non-destructively quantify 1) root water uptake and 2) root length of nodal and seminal roots of barley in three dimensions during 43 days of growth. We developed a concentric split root system to hydraulically and physically isolate the seminal and nodal root systems.
View Article and Find Full Text PDFTo answer long-standing questions about how plants use and regulate water, an affordable, noninvasive way to determine local root water uptake (RWU) is required. Here, we present a sensor, the soil water profiler (SWaP), which can determine local soil water content (θ) with a precision of 6.10 cm ⋅ cm, an accuracy of 0.
View Article and Find Full Text PDFAt elevated temperatures, -cyanosulfoximines react with Meldrum's acid derivatives to give sulfoximines with -bound 5-carbonyl-1,3-oxazine-2,4-dione groups. A representative product was characterized by single-crystal X-ray structure analysis. The product formation involves an unexpected molecular reorientation requiring several sequential bond-forming and -cleaving processes.
View Article and Find Full Text PDFWe introduce a novel technique to measure volumes of any shaped objects based on acoustic components. The focus is on small objects with rough surfaces, such as plant seeds. The method allows measurement of object volumes more than 1000 times smaller than the volume of the sensor chamber with both high precision and high accuracy.
View Article and Find Full Text PDFThe enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements.
View Article and Find Full Text PDFPrecise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g.
View Article and Find Full Text PDF