Publications by authors named "Johannes Keegstra"

Most of Earth's biomass is composed of polysaccharides. During biomass decomposition, polysaccharides are degraded by heterotrophic bacteria as a nutrient and energy source and are thereby partly remineralized into CO. As polysaccharides are heterogeneously distributed in nature, following the colonization and degradation of a polysaccharide hotspot the cells need to reach new polysaccharide hotspots.

View Article and Find Full Text PDF
Article Synopsis
  • Marine bacteria can navigate towards large algal polysaccharides like laminarin and alginate, influencing interactions and nutrient cycling in marine ecosystems.
  • Although bacteria typically respond to small metabolites, these polysaccharides showed an unexpectedly strong attraction compared to their smaller sugar constituents.
  • Additionally, dimethylsulfoniopropionate (DMSP) enhances this attraction, suggesting it may aid bacteria in detecting polysaccharide gradients and play a significant ecological role in marine carbon cycling.
View Article and Find Full Text PDF

Microbial communities perform essential ecosystem functions such as the remineralization of organic carbon that exists as biopolymers. The first step in mineralization is performed by biopolymer degraders, which harbor enzymes that can break down polymers into constituent oligo- or monomeric forms. The released nutrients not only allow degraders to grow, but also promote growth of cells that either consume the degradation products, i.

View Article and Find Full Text PDF

Polysaccharide breakdown by bacteria requires the activity of enzymes that degrade polymers either intra- or extra-cellularly. The latter mechanism generates a localized pool of breakdown products that are accessible to the enzyme producers themselves as well as to other organisms. Marine bacterial taxa often show marked differences in the production and secretion of degradative enzymes that break down polysaccharides.

View Article and Find Full Text PDF

To swim up gradients of nutrients, E. coli senses nutrient concentrations within its periplasm. For small nutrient molecules, periplasmic concentrations typically match extracellular concentrations.

View Article and Find Full Text PDF

How bacterial chemotaxis is performed is much better understood than why. Traditionally, chemotaxis has been understood as a foraging strategy by which bacteria enhance their uptake of nutrients and energy, yet it has remained puzzling why certain less nutritious compounds are strong chemoattractants and vice versa. Recently, we have gained increased understanding of alternative ecological roles of chemotaxis, such as navigational guidance in colony expansion, localization of hosts or symbiotic partners and contribution to microbial diversity by the generation of spatial segregation in bacterial communities.

View Article and Find Full Text PDF

Microbial populations often experience fluctuations in nutrient complexity in their natural environment such as between high molecular weight polysaccharides and simple monosaccharides. However, it is unclear if cells can adopt growth behaviors that allow individuals to optimally respond to differences in nutrient complexity. Here, we directly control nutrient complexity and use quantitative single-cell analysis to study the growth dynamics of individuals within populations of the aquatic bacterium Caulobacter crescentus.

View Article and Find Full Text PDF

We present single-cell FRET measurements in the chemotaxis system that reveal pervasive signaling variability, both across cells in isogenic populations and within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response, as well as steady-state output level, and analyze the role of network design in shaping this diversity from gene expression noise. In the absence of changes in gene expression, we find that single cells demonstrate strong temporal fluctuations.

View Article and Find Full Text PDF

We explore the extent to which the phenotypes of individual, genetically identical cells can be controlled independently from each other using only a single homogeneous environmental input. We show that such control is theoretically impossible if restricted to a deterministic setting, but it can be achieved readily if one exploits heterogeneities introduced at the single-cell level due to stochastic fluctuations in gene regulation. Using stochastic analyses of a bistable genetic toggle switch, we develop a control strategy that maximizes the chances that a chosen cell will express one phenotype, while the rest express another.

View Article and Find Full Text PDF

RNA plays myriad roles in the transmission and regulation of genetic information that are fundamentally constrained by its mechanical properties, including the elasticity and conformational transitions of the double-stranded (dsRNA) form. Although double-stranded DNA (dsDNA) mechanics have been dissected with exquisite precision, much less is known about dsRNA. Here we present a comprehensive characterization of dsRNA under external forces and torques using magnetic tweezers.

View Article and Find Full Text PDF

Solid-state nanopores have been used widely to study biological polymers. Here, we expand the technique to analyze single-wall carbon nanotubes. By wrapping them in an amphiphilic layer, individual tubes can be translocated electrically through a nanopore, resulting in temporary interruptions in the trans-pore current reminiscent of measurements on DNA, RNA, and proteins.

View Article and Find Full Text PDF

We report the translocation of individual single-wall carbon nanotubes (SWNTs) through solid-state nanopores. Single-strand DNA oligomers are used to both disperse the SWNTs in aqueous solution and to provide them with a net charge, allowing them to be driven through the nanopores by an applied electric field. The resulting temporary interruptions in the measured nanopore conductance provide quantitative information on the diameter and length of the translocated nanotubes at a single-molecule level.

View Article and Find Full Text PDF