The way organismic agents come to know the world, and the way algorithms solve problems, are fundamentally different. The most sensible course of action for an organism does not simply follow from logical rules of inference. Before it can even use such rules, the organism must tackle the problem of relevance.
View Article and Find Full Text PDFA recent publication in Nature has generated much heated discussion about evolution, its tendency towards increasing diversity and complexity, and its potential status above and beyond the known laws of fundamental physics. The argument at the heart of this controversy concerns assembly theory, a method to detect and quantify the influence of higher-level emergent causal constraints in computational worlds made of basic objects and their combinations. In this short essay, I briefly review the theory, its basic principles and potential applications.
View Article and Find Full Text PDFMore than ever, humanity relies on robust scientific knowledge of the world and our place within it. Unfortunately, our contemporary view of science is still suffused with outdated ideas about scientific knowledge production based on a naive kind of realism. These ideas persist among members of the public and scientists alike.
View Article and Find Full Text PDFThe origin of RNA interference (RNAi) is usually explained by a defense-based hypothesis, in which RNAi evolved as a defense against transposable elements (TEs) and RNA viruses and was already present in the last eukaryotic common ancestor (LECA). However, since RNA antisense regulation and double-stranded RNAs (dsRNAs) are ancient and widespread phenomena, the origin of defensive RNAi should have occurred in parallel with its regulative functions to avoid imbalances in gene regulation. Thus, we propose a neutral evolutionary hypothesis for the origin of RNAi in which qualitative system drift from a prokaryotic antisense RNA gene regulation mechanism leads to the formation of RNAi through constructive neutral evolution (CNE).
View Article and Find Full Text PDFObjectives: Austria, and particularly its westernmost federal state Vorarlberg, developed an extremely high incidence rate during the COVID-19 pandemic. Healthcare workers (HCWs) worldwide are known to have an increased risk of contracting the disease within the working environment and, therefore, the seroprevalence in this population is of particular interest. We thus aimed to analyse SARS-CoV-2-specific antibody dynamics in Vorarlberg HCWs.
View Article and Find Full Text PDFModularity is an essential feature of any adaptive complex system. Phenotypic traits are modules in the sense that they have a distinguishable structure or function, which can vary (quasi-)independently from its context. Since all phenotypic traits are the product of some underlying regulatory dynamics, the generative processes that constitute the genotype-phenotype map must also be functionally modular.
View Article and Find Full Text PDFComparative biology builds up systematic knowledge of the diversity of life, across evolutionary lineages and levels of organization, starting with evidence from a sparse sample of model organisms. In developmental biology, a key obstacle to the growth of comparative approaches is that the concept of homology is not very well defined for levels of organization that are intermediate between individual genes and morphological characters. In this paper, we investigate what it means for ontogenetic processes to be homologous, focusing specifically on the examples of insect segmentation and vertebrate somitogenesis.
View Article and Find Full Text PDFThe logic of genetic discovery has changed little over time, but the focus of biology is shifting from simple genotype-phenotype relationships to complex metabolic, physiological, developmental, and behavioral traits. In light of this, the traditional reductionist view of individual genes as privileged difference-making causes of phenotypes is re-examined. The scope and nature of genetic effects in complex regulatory systems, in which dynamics are driven by regulatory feedback and hierarchical interactions across levels of organization are considered.
View Article and Find Full Text PDFThere is much talk about information in biology. In developmental biology, this takes the form of "positional information," especially in the context of morphogen-based pattern formation. Unfortunately, the concept of "information" is rarely defined in any precise manner.
View Article and Find Full Text PDFThe existence of discrete phenotypic traits suggests that the complex regulatory processes which produce them are functionally modular. These processes are usually represented by networks. Only modular networks can be partitioned into intelligible subcircuits able to evolve relatively independently.
View Article and Find Full Text PDFGap genes are involved in segment determination during early development of the vinegar fly and other dipteran insects (flies, midges and mosquitoes). They are expressed in overlapping domains along the antero-posterior (A-P) axis of the blastoderm embryo. While gap domains cover the entire length of the A-P axis in there is a region in the blastoderm of the moth midge , which lacks canonical gap gene expression.
View Article and Find Full Text PDFEvolution of morphogenesis is generally associated with changes in genetic regulation. Here, we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In , dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis.
View Article and Find Full Text PDFInsects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation.
View Article and Find Full Text PDFBackground: Bone morphogenetic proteins (BMPs) are of central importance for dorsal-ventral (DV) axis specification. They are core components of a signalling cascade that includes the BMP ligand decapentaplegic (DPP) and its antagonist short gastrulation (SOG) in . These components are very ancient, with orthologs involved in DV patterning in both protostomes and deuterostomes.
View Article and Find Full Text PDFPLoS Comput Biol
February 2017
Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster.
View Article and Find Full Text PDFUnderstanding eukaryotic transcriptional regulation and its role in development and pattern formation is one of the big challenges in biology today. Most attempts at tackling this problem either focus on the molecular details of transcription factor binding, or aim at genome-wide prediction of expression patterns from sequence through bioinformatics and mathematical modelling. Here we bridge the gap between these two complementary approaches by providing an integrative model of cis-regulatory elements governing the expression of the gap gene giant (gt) in the blastoderm embryo of Drosophila melanogaster.
View Article and Find Full Text PDFDevelopmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as "system drift." System drift is illustrated by the gap gene network-involved in segmental patterning-in dipteran insects.
View Article and Find Full Text PDFGap genes are involved in segment determination during early development in dipteran insects (flies, midges, and mosquitoes). We carried out a systematic quantitative comparative analysis of the gap gene network across different dipteran species. Our work provides mechanistic insights into the evolution of this pattern-forming network.
View Article and Find Full Text PDFBackground: Dynamic modelling is one of the cornerstones of systems biology. Many research efforts are currently being invested in the development and exploitation of large-scale kinetic models. The associated problems of parameter estimation (model calibration) and optimal experimental design are particularly challenging.
View Article and Find Full Text PDFIn a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view.
View Article and Find Full Text PDFAxis specification and segment determination in dipteran insects are an excellent model system for comparative analyses of gene network evolution. Antero-posterior polarity of the embryo is established through systems of maternal morphogen gradients. In Drosophila melanogaster, the anterior system acts through opposing gradients of Bicoid (Bcd) and Caudal (Cad), while the posterior system involves Nanos (Nos) and Hunchback (Hb) protein.
View Article and Find Full Text PDFThe segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi).
View Article and Find Full Text PDFWe present SuperFly (http://superfly.crg.eu), a relational database for quantified spatio-temporal expression data of segmentation genes during early development in different species of dipteran insects (flies, midges and mosquitoes).
View Article and Find Full Text PDF