The identification of cell surface proteins on stem cells or stem cell derivatives is a key strategy for the functional characterization, isolation, and understanding of stem cell population dynamics. Here, using an integrated mass spectrometry- and microarray-based approach, we analyzed the surface proteome and transcriptome of cardiac progenitor cells (CPCs) generated from the stage-specific differentiation of mouse and human pluripotent stem cells. Through bioinformatics analysis, we have identified and characterized FZD4 as a marker for lateral plate mesoderm.
View Article and Find Full Text PDFChromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins.
View Article and Find Full Text PDFMass spectrometry-based targeted proteomic assays are experiencing a surge in awareness due to the diverse possibilities arising from the re-application of traditional LC-SRM technology. The FDA-approved quantitative LC-SRM-pipeline in drug discovery motivates the use to quantitatively validate putative proteomic biomarkers. However, complexity of biological specimens bears a huge challenge to identify, in parallel, specific peptides and proteins of interest from large biomarker candidate lists.
View Article and Find Full Text PDFBioactive molecules typically mediate their biological effects through direct physical association with one or more cellular proteins. The detection of drug-target interactions is therefore essential for the characterization of compound mechanism of action and off-target effects, but generic label-free approaches for detecting binding events in biological mixtures have remained elusive. Here, we report a method termed target identification by chromatographic co-elution (TICC) for routinely monitoring the interaction of drugs with cellular proteins under nearly physiological conditions in vitro based on simple liquid chromatographic separations of cell-free lysates.
View Article and Find Full Text PDFSingle-cell analysis using chemical methods, otherwise known as chemical cytometry, promises to provide significant leaps in understanding signaling processes which result in cellular behavior. Sensitive methods for chemical cytometry such as capillary electrophoresis can detect and quantify multiple targets; however, conclusive identification of detected analytes is required for useful data to be obtained. Here, we demonstrate a method for determining the identity of enzyme-converted peptide products from single cells using a combination of capillary electrophoresis and liquid chromatography-mass spectrometry (LC-MS).
View Article and Find Full Text PDFEffective methods to detect and quantify functionally linked regulatory proteins in complex biological samples are essential for investigating mammalian signaling pathways. Traditional immunoassays depend on proprietary reagents that are difficult to generate and multiplex, whereas global proteomic profiling can be tedious and can miss low abundance proteins. Here, we report a target-driven liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy for selectively examining the levels of multiple low abundance components of signaling pathways which are refractory to standard shotgun screening procedures and hence appear limited in current MS/MS repositories.
View Article and Find Full Text PDFProtein complexes and protein-protein interactions are essential for almost all cellular processes. Here, we establish a mammalian affinity purification and lentiviral expression (MAPLE) system for characterizing the subunit compositions of protein complexes. The system is flexible (i.
View Article and Find Full Text PDFThe complex nature of enzyme regulation mandates that enzyme activity profiles be measured in the context of the intact cell. Single-cell capillary electrophoresis (CE) coupled with laser-induced fluorescence is a powerful approach for quantitation and separation of analytes present in small samples and single live cells; however, it does not allow for the definitive identification of the reaction products. On the other hand, mass spectrometry (MS) is able to identify analytes but still lacks the requisite sensitivity for most single-cell analysis applications.
View Article and Find Full Text PDFThe most common cause of kidney transplant failure is the poorly characterized histopathologic entity interstitial fibrosis and tubular atrophy (IFTA). There are no known unifying mechanisms, no effective therapy, and no proven preventive strategies. Possible mechanisms include chronic immune rejection, inflammation, drug toxicity, and chronic kidney injury from secondary factors.
View Article and Find Full Text PDFRecent advances in mass spectrometry and bioinformatics have provided the means to characterize complex protein landscapes from a wide variety of organisms and cell types. Development of standard proteomes exhibiting all of the proteins involved in normal physiology will facilitate the delineation of disease mechanisms. Here, we examine the wild-type cardiac proteome using data obtained from a subcellular fractionation protocol in combination with a multidimensional protein identification proteomics approach.
View Article and Find Full Text PDFDiverse proteomic techniques based on protein MS have been introduced to systematically characterize protein perturbations associated with disease. Progress in clinical proteomics is essential for personalized medicine, wherein treatments will be tailored to individual needs based on patient stratification using noninvasive disease monitoring procedures to reveal the most appropriate therapeutic targets. However, breakthroughs await the successful development and application of a robust proteomic pipeline capable of identifying and rigorously assessing the relevance of multiple candidate proteins as informative diagnostic and prognostic indicators or suitable drug targets involved in a pathological process.
View Article and Find Full Text PDFSaliva is a body fluid with important functions in oral and general health. A consortium of three research groups catalogued the proteins in human saliva collected as the ductal secretions: 1166 identifications--914 in parotid and 917 in submandibular/sublingual saliva--were made. The results showed that a high proportion of proteins that are found in plasma and/or tears are also present in saliva along with unique components.
View Article and Find Full Text PDFIn breast cancer, there is a significant degree of molecular diversity among tumors. Multiple perturbations in signal transduction pathways impinge on transcriptional networks that in turn dictate malignant transformation and metastatic progression. Detailed knowledge of the sequence-specific transcription factors that become activated or repressed within a tumor and comparison of their relative levels of expression in cancer versus normal tissue should therefore provide insight into disease mechanisms, improving patient stratification and facilitating personalized treatment.
View Article and Find Full Text PDFBrain metastases are among the most feared complications in breast cancer, as no therapy exists that prevents or eliminates breast cancer spreading to the brain. New therapeutic strategies depend on specific knowledge of tumor cell properties that allow breast cancer cell growth within the brain tissue. To provide information in this direction, we established a human breast cancer cell model for brain metastasis based on circulating tumor cells from a breast cancer patient and variants of these cells derived from bone or brain lesions in immunodeficient mice.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
August 2007
Specific identification of Bacillus anthracis (B. anthracis) is vital for the accurate treatment of afflicted personnel during biological warfare situations and civilian terrorist attacks. In order to accomplish this, we have subjected the lysates from B.
View Article and Find Full Text PDFIn the past decade, shotgun proteomic analysis has been utilized extensively to answer complex biological questions. New challenges arise in large scale proteomic profiling when dealing with complex biological mixtures such as the mammalian cell lysate. In this study, we explored the approach of protein separation prior to the shotgun multidimensional protein identification technology (MudPIT) analysis.
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) have significant therapeutic potential. However, the low quantity of such cells available from bone marrow and their limited capacity to proliferate in culture make their use difficult. Here, we present the first definitive demonstration of the presence of true EPCs in murine fetal liver capable of forming blood vessels in vivo connected to the host's vasculature after transplantation.
View Article and Find Full Text PDFFour phosphoenolpyruvate (PEP) derivatives, carrying reactive or activable chemical functions in each of the three chemical regions of PEP, were assayed as alternative substrates of enzyme I (EI) of the Escherichia coli PEP:glucose phosphotransferase system. The Z- and E-isomers of 3-chlorophosphoenolpyruvate (3-Cl-PEP) were substrates, presenting K(m) values of 0.08 and 0.
View Article and Find Full Text PDF