Publications by authors named "Johannes Forkman"

Checking for possible inconsistency between direct and indirect evidence is an important task in network meta-analysis. Recently, an evidence-splitting (ES) model has been proposed, that allows separating direct and indirect evidence in a network and hence assessing inconsistency. A salient feature of this model is that the variance for heterogeneity appears in both the mean and the variance structure.

View Article and Find Full Text PDF

It is commonly believed that if a two-way analysis of variance (ANOVA) is carried out in R, then reported p-values are correct. This article shows that this is not always the case. Results can vary from non-significant to highly significant, depending on the choice of options.

View Article and Find Full Text PDF

Background: Biological variation (BV) of urinary (U) biochemical analytes has not been described in absolute terms, let alone as a ratio of the U-creatinine or fractional excretion in healthy dogs. These analytes are potential diagnostic tools for different types of kidney damage and electrolyte disorders in dogs.

Objectives: We aimed to investigate the BV of specific gravity, osmolality, creatinine, urea, protein, glucose, chloride, sodium, potassium, calcium, and phosphate in urine from healthy pet dogs.

View Article and Find Full Text PDF

We propose the utilisation of environmental covariates in random coefficient models to predict the genotype performances in new locations. Multi-environment trials (MET) are conducted to assess the performance of a set of genotypes in a target population of environments. From a grower's perspective, MET results must provide high accuracy and precision for predictions of genotype performance in new locations, i.

View Article and Find Full Text PDF

Background: Obesity is associated with insulin resistance (IR) and considered a risk factor for diabetes mellitus (DM) in cats. It has been proposed that homeostasis model assessment (HOMA-IR), which is the product of fasting serum insulin (mU/L) and glucose (mmol/L) divided by 22.5, can be used to indicate IR.

View Article and Find Full Text PDF

For analysing multienvironment trials with replicates, a resampling-based method is proposed for testing significance of multiplicative interaction terms in AMMI and GGE models, which is superior compared to contending methods in robustness to heterogeneity of variance. The additive main effects and multiplicative interaction model and genotype main effects and genotype-by-environment interaction model are commonly used for the analysis of multienvironment trial data. Agronomists and plant breeders are frequently using these models for cultivar trials repeated across different environments and/or years.

View Article and Find Full Text PDF

This article derives generalized prediction intervals for random effects in linear random-effects models. For balanced and unbalanced data in two-way layouts, models are considered with and without interaction. Coverage of the proposed generalized prediction intervals was estimated in a simulation study based on an agricultural field experiment.

View Article and Find Full Text PDF

Linear mixed-effects models are linear models with several variance components. Models with a single random-effects factor have two variance components: the random-effects variance, i. e.

View Article and Find Full Text PDF

The genotype main effects and genotype-by-environment interaction effects (GGE) model and the additive main effects and multiplicative interaction (AMMI) model are two common models for analysis of genotype-by-environment data. These models are frequently used by agronomists, plant breeders, geneticists and statisticians for analysis of multi-environment trials. In such trials, a set of genotypes, for example, crop cultivars, are compared across a range of environments, for example, locations.

View Article and Find Full Text PDF