Hydrogels based on supramolecular assemblies offer attractive features for biomedical applications including injectability or versatile combinations of various building blocks. We here investigate a system combining benzenetrispeptides (BTP), which forms supramolecular fibers, with polymer polyethylene oxide (PEO) forming a dense hydrophilic shell around the fibers. Hydrogels are created through the addition of a bifunctional crosslinker (CL).
View Article and Find Full Text PDFDue to the increasing challenges posed by the growing immunity to poly(ethylene glycol) (PEG), there is growing interest in innovative polymer-based materials as viable alternatives. In this study, the advantages of lipids and polymers are combined to allow efficient and rapid cytoplasmic drug delivery. Specifically, poly(2-methyl-2-oxazoline) is modified with a cholesteryl hemisuccinate group as a lipid anchor (CHEMSPOx).
View Article and Find Full Text PDFPolymeric micelles with a hydrophobic core represent versatile nanostructures for encapsulation and delivery of water-insoluble drugs. Here, water-insoluble beclometasone dipropionate (BDP) which is a potent anti-inflammatory therapeutic agent but limited to topical applications so far, is encapsulated. Therefore, this work used an amphiphilic block copolymer self-assembling into flexible polymeric filomicelles, which have recently proven to selectively target inflamed areas in patients with inflammatory bowel disease (IBD).
View Article and Find Full Text PDFPolymeric nanoparticles (NPs) with an integrated dual delivery system enable the controlled release of bioactive molecules and drugs, providing therapeutic advantages. Key design targets include high biocompatibility, cellular uptake, and encapsulating efficiency. In this study, a polymer library derived from niacin, also known as vitamin B3 is synthesized.
View Article and Find Full Text PDFHydrogen bonds are a versatile tool for creating fibrous, bottlebrush-like assemblies of polymeric building blocks. However, a delicate balance of forces exists between the steric repulsion of the polymer chains and these directed supramolecular forces. In this work we have systematically investigated the influence of structural parameters of the attached polymers on the assembly behaviour of benzene trisurea (BTU) and benzene tris(phenylalanine) (BTP) conjugates in water.
View Article and Find Full Text PDFThe arrangement of charged segments in triblock copolymer micelles affects the gene delivery potential of polymeric micelles and can increase the level of gene expression when an anionic segment is incorporated in the outer shell. Triblock copolymers were synthesized by RAFT polymerzation with narrow molar mass distributions and assembled into micelles with a hydrophobic core from poly(-butyl acrylate). The ionic shell contained either (i) an anionic segment followed by a cationic segment ( micelles) or (ii) a cationic block followed by an anionic block ( micelles).
View Article and Find Full Text PDFInflammatory bowel disease (IBD) has become a globally prevalent chronic disease with no causal therapeutic options. Targeted drug delivery systems with selectivity for inflamed areas in the gastrointestinal tract promise to reduce severe drug-related side effects. By creating three distinct nanostructures (vesicles, spherical, and wormlike micelles) from the same amphiphilic block copolymer poly(butyl acrylate)-block-poly(ethylene oxide) (PBA-b-PEO), the effect of nanoparticle shape on human mucosal penetration is systematically identified.
View Article and Find Full Text PDFThe use of PEG-based hydrogels as cell culture matrix to mimic the natural extracellular matrix (ECM) has been realized using a range of well-defined, tunable, and dynamic scaffolds, although they require cell adhesion ligands such as RGDS-peptide (Arg-Gly-Asp-Ser) to promote cell adhesion. Herein the synthesis of ionic and degradable hydrogels is demonstrated for cell culture by crosslinking [PEG-SH] with the zwitterionic crosslinker N,N-bis(acryloxyethyl)-N-methyl-N-(3-sulfopropyl) ammonium betaine (BMSAB) and the cationic crosslinker N,N-bis(acryloxyethyl)-N,N-dimethyl-1-ammonium iodide (BDMAI). Depending on the amount of ionic crosslinker used in gel formation, the hydrogels show tunable gelation time and stiffness.
View Article and Find Full Text PDFThe COVID-19 mRNA vaccines represent a milestone in developing non-viral gene carriers, and their success highlights the crucial need for continued research in this field to address further challenges. Polymer-based delivery systems are particularly promising due to their versatile chemical structure and convenient adaptability, but struggle with the toxicity-efficiency dilemma. Introducing anionic, hydrophilic, or "stealth" functionalities represents a promising approach to overcome this dilemma in gene delivery.
View Article and Find Full Text PDFWith the incorporation of polyampholytic segments into soft matter, hydrogels can serve as a reservoir for a variety of charged molecules which can be caught and released upon changes in pH value. Asymmetric block extension of one arm for star-shaped poly(ethylene glycol) [PEG -SH] using short segments of polyampholytic poly(dehydroalanine) (PDha) is herein demonstrated while maintaining the functional thiol end groups for network formation. For subsequent hydrogel synthesis with up to 10 wt.
View Article and Find Full Text PDFPolythiophene-based conjugated polyelectrolytes (CPE) are attracting increasing attention as sensor or interface materials in chemistry and biology. While cationic polythiophenes are better understood, limited structural information is available on their anionic counterparts. Limited access to well-defined polymers has made the study of structure-property relationships difficult and clear correlations have remained elusive.
View Article and Find Full Text PDFCationic pH-responsive polymers promise to overcome critical challenges in cellular delivery. Ideally, the polymers become selectively charged along the endosomal pathway disturbing only the local membrane and avoiding unintended interactions or cytotoxic side effects at physiological conditions. Polypiperazines represent a novel, hydrophilic class of pH-responsive polymers whose response can be tuned within the relevant pH range (5-7.
View Article and Find Full Text PDFCrossing the cellular membrane and delivering active pharmaceuticals or biologicals into the cytosol of cells is an essential step in the development of nanomedicines. One of the most important intracellular processes regarding the cellular uptake of biologicals is the endolysosomal pathway. Sophisticated nanocarriers are developed to overcome a major hurdle, the endosomal entrapment, and delivering their cargo to the required site of action.
View Article and Find Full Text PDFThermo-responsive hydrophilic polymers, including those showing tuneable lower critical solution temperature (LCST), represent a continuous subject of exploration for a variety of applications, but particularly in nanomedicine. Since biological pH changes can inform the organism about the presence of disequilibrium or diseases, the development of dual LCST/pH-responsive hydrophilic polymers with biological potential is an attractive subject in polymer science. Here, we present a novel polymer featuring LCST/pH double responsiveness.
View Article and Find Full Text PDFThe reversible addition-fragmentation chain-transfer (RAFT) process has become a versatile tool for the preparation of defined polymers tolerating a large variety of functional groups. Several dithioesters, trithiocarbonates, xanthates, or dithiocarbamates have been developed as effective chain transfer agents (CTAs), but only a few examples have been reported, where the resulting end groups are directly considered for a secondary use besides controlling the polymerization. Herein, it is demonstrated that β-hydroxy dithiocinnamic esters represent a hitherto overlooked class of materials, which are originally designed for the complexation of transition metals but may as well act as reversible CTAs.
View Article and Find Full Text PDFStrong directional hydrogen bonds represent a suitable supramolecular force to drive the one-dimensional (1D) aqueous self-assembly of polymeric amphiphiles resulting in cylindrical polymer brushes. However, our understanding of the kinetics in these assembly processes is still limited. We here demonstrate that the obtained morphologies for our recently reported benzene tris-urea and tris-peptide conjugates are strongly pathway-dependent.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is characterized by increased levels of reactive oxygen species (ROS) in inflamed areas of the gastrointestinal tract and in circulating immune cells, providing novel opportunities for targeted drug delivery. In the recent experiments, oxidation-responsive polymeric nanostructures selectively degrade in the presence of H O . Based on these results, it is hypothesized that such degradation process can be triggered in a similar way by the incubation with stimulated monocytes isolated from patients with IBD.
View Article and Find Full Text PDFControlling the length of one-dimensional (1D) polymer nanostructures remains a key challenge on the way toward the applications of these structures. Here, we demonstrate that top-down processing facilitates a straightforward adjustment of the length of polyethylene oxide (PEO)-based supramolecular polymer bottlebrushes (SPBs) in aqueous solutions. These cylindrical structures self-assemble via directional hydrogen bonds formed by benzenetrisurea (BTU) or benzenetrispeptide (BTP) motifs located within the hydrophobic core of the fiber.
View Article and Find Full Text PDFCationic polymers have been widely studied for non-viral gene delivery due to their ability to bind genetic material and to interact with cellular membranes. However, their charged nature carries the risk of increased cytotoxicity and interaction with serum proteins, limiting their potential in vivo application. Therefore, hydrophilic or anionic shielding polymers are applied to counteract these effects.
View Article and Find Full Text PDFReactive polymersomes represent a versatile artificial cargo carrier system that can facilitate an immediate release in response to a specific stimulus. The herein presented oxidation-sensitive polymersomes feature a time-delayed release mechanism in an oxidative environment, which can be precisely adjusted by either tuning the membrane thickness or partial pre-oxidation. These polymeric vesicles are conveniently prepared by PISA allowing the straightforward and effective in situ encapsulation of cargo molecules, as shown for dyes and enzymes.
View Article and Find Full Text PDFResponsive polymers, which become protonated at decreasing pH, are considered a milestone in the development of synthetic cell entry vectors. Exact correlations between their properties and their ability to escape the endosome, however, often remain elusive due to hydrophobic interactions or limitations in the design of water-soluble materials with suitable basicity. Here, we present a series of well-defined, hydrophilic polypiperazines, where systematic variation of the amino moiety facilitates an unprecedented fine-tuning of the basicity or p value within the physiologically relevant range (pH 6-7.
View Article and Find Full Text PDFOver the past few decades, there has been remarkable progress in the construction of self-assemblies in the field of supramolecular chemistry, such as micelles with precisely controlled and refined structures. One promising approach represents the previously proposed concept of Platonic micelles, in which the aggregation number (N ) is discretized in accordance with vertexes of regular polyhedra (i.e.
View Article and Find Full Text PDFAlthough there has been substantial progress in the research field of gene delivery, there are some challenges remaining, e.g. there are still cell types such as primary cells and suspension cells (immune cells) known to be difficult to transfect.
View Article and Find Full Text PDFThe assembly of supramolecular polymer bottlebrushes in aqueous systems is, in most cases, associated with a lateral aggregation of the supramolecular building blocks in addition to their axial stacking. Here, it is demonstrated that this limitation can be overcome by attaching three polymer chains to a central supramolecular unit that possesses a sufficiently high number of hydrogen bonding units to compensate for the increased steric strain. Therefore, a 1,3,5-benzenetrisurea-polyethylene oxide conjugate is modified with different peptide units located next to the urea groups which should facilitate self-assembly in water.
View Article and Find Full Text PDFOrganic polymer-based batteries represent a promising alternative to present-day metal-based systems and a valuable step toward printable and customizable energy storage devices. However, most scientific work is focussed on the development of new redox-active organic materials, while straightforward manufacturing and sustainable materials and production will be a necessary key for the transformation to mass market applications. Here, a new synthetic approach for 2,2,6,6-tetramethyl-4-piperinidyl-N-oxyl (TEMPO)-based polymer particles by emulsion polymerization and their electrochemical investigation are reported.
View Article and Find Full Text PDF