Publications by authors named "Johannes Boog"

Large-scale and high-resolution groundwater models are currently becoming increasingly important in order to clarify the extent to which climate trends and extreme weather affect the groundwater balance regionally. As a result, the parameterization of groundwater models is becoming more detailed and more complex, making conventional calibration methods too time-consuming. Moderating the computational demand to find optimal solutions for the resulting potentially multi-modal objective function requires intelligent and efficient global optimization methods.

View Article and Find Full Text PDF

Despite recent developments in process-based modeling of treatment wetlands (TW), the dynamic response of horizontal flow (HF) aerated wetlands to interruptions of aeration has not yet been modeled. In this study, the dynamic response of organic carbon and nitrogen removal to interruptions of aeration in an HF aerated wetland was investigated using a recently-developed numerical process-based model. Model calibration and validation were achieved using previously obtained data from pilot-scale experiments.

View Article and Find Full Text PDF

Mechanical aeration is commonly used to improve the overall treatment efficacy of constructed wetlands. However, the quantitative relationships of air flow rate (AFR), water temperature, field oxygen transfer and treatment performance have not been analyzed in detail until today. In this study, a reactive transport model based on dual-permeability flow and biokinetic formulations of the Constructed Wetland Model No.

View Article and Find Full Text PDF

This study reports a systematic assessment of treatment efficacy for 15 pilot-scale subsurface flow constructed wetlands of different designs for CBOD, TSS, TOC, TN, NH-N, NO-N, NO-N, and E. coli over the course of one year in an outdoor study to evaluate the effects of design and plants. The systems consisted of a range of designs: horizontal flow (HF) with 50 and 25 cm depth, unsaturated vertical flow (VF) with sand or fine gravel, and intensified systems (horizontal and saturated vertical flow with aeration, and reciprocating fill and drain).

View Article and Find Full Text PDF

Six pilot-scale treatment wetlands treating municipal wastewater were monitored for classical wastewater parameters and selected Emerging Organic Compounds (EOCs): caffeine (CAF), ibuprofen (IBU), naproxen (NPX), benzotriazole (BTZ), diclofenac (DCL), acesulfame (ACE) and carbamazepine (CBZ) on a weekly basis over the course of one year. Treatment efficacy of the wetland systems was compared to that of a municipal wastewater treatment plant adjacent to the research site (activated sludge technology). The aerated wetlands VAp and HAp, and the two-stage vertical flow system VGp + VSp showed the highest treatment efficacy (>70% removal on a mass basis) and comparable treatment efficacy to the conventional WWTP for removal of CAF, IBU, NPX, BTZ, and DCL.

View Article and Find Full Text PDF

Treatment wetlands have long been used for domestic and industrial wastewater treatment. In recent decades, treatment wetland technology has evolved and now includes intensified designs such as aerated treatment wetlands. Aerated treatment wetlands are particularly dependent on aeration, which requires reliable air pumps and, in most cases, electricity.

View Article and Find Full Text PDF

In this study, a side-by-side comparison of two pilot-scale vertical subsurface flow constructed wetlands (6.2 m(2)×0.85 m, q(i)=95 L/m(2) d, τ(n)=3.

View Article and Find Full Text PDF