Protected and spin-polarized transport channels are the hallmark of topological insulators, coming along with an intrinsic strong spin-orbit coupling. Here we identified such corresponding chiral states in epitaxially grown zigzag graphene nanoribbons (zz-GNRs), albeit with an extremely weak spin-orbit interaction. While the bulk of the monolayer zz-GNR is fully suspended across a SiC facet, the lower edge merges into the SiC(0001) substrate and reveals a surface state at the Fermi energy, which is extended along the edge and splits in energy toward the bulk.
View Article and Find Full Text PDFThe ability to define an off state in logic electronics is the key ingredient that is impossible to fulfill using a conventional pristine graphene layer, due to the absence of an electronic bandgap. For years, this property has been the missing element for incorporating graphene into next-generation field effect transistors. In this work, we grow high-quality armchair graphene nanoribbons on the sidewalls of 6H-SiC mesa structures.
View Article and Find Full Text PDFHigh quality graphene nanoribbons epitaxially grown on the sidewalls of silicon carbide (SiC) mesa structures stand as key building blocks for graphene-based nanoelectronics. Such ribbons display 1D single-channel ballistic transport at room temperature with exceptionally long mean free paths. Here, using spatially-resolved two-point probe (2PP) measurements, we selectively access and directly image a range of individual transport modes in sidewall ribbons.
View Article and Find Full Text PDFTwin grain boundaries in MoSe are metallic and undergo a metal to insulator Peierls transition at low temperature. Growth of MoSe by molecular beam epitaxy results in the spontaneous formation of a high density of these twin grain boundaries, likely as a mechanism to incorporate Se deficiency in the film. Using scanning tunneling microscopy, we study the grain boundary network that is formed in homoepitaxially grown MoSe and for MoSe grown heteroepitaxially on MoS and HOPG substrates.
View Article and Find Full Text PDFWe realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed by in situ transport measurements at various temperatures.
View Article and Find Full Text PDF