Publications by authors named "Johannes A M Te Poele"

Background. Radiotherapy is commonly used to treat breast and thoracic cancers but it also causes delayed microvascular damage and increases the risk of cardiac mortality. Endothelial cell proliferation and revascularization are crucial to restore microvasculature damage and maintain function of the irradiated heart.

View Article and Find Full Text PDF

In Her2-positive breast cancer patients, inhibition of epidermal growth factor receptor 2 (ErbB2)-signaling is often combined with chemotherapy and radiotherapy. The risk of cardiac toxicity after anthracyclines and radiotherapy is recognized, but little is known about increased risk when these treatments are combined with ErbB2 inhibition. This study investigated whether ErbB2 inhibition increased radiation or anthracycline-induced toxicity.

View Article and Find Full Text PDF

Background: It is now widely recognized that radiotherapy of thoracic and chest wall tumors increases the long-term risk of cardiovascular damage although the underlying mechanisms are not fully elucidated. There is increasing evidence that microvascular damage is involved. Endoglin, an accessory receptor for TGF-β1, is highly expressed in damaged endothelial cells and may play a crucial role in cell proliferation and revascularization of damaged heart tissue.

View Article and Find Full Text PDF

Background And Purpose: We have previously shown that irradiation to the carotid arteries of hypercholesterolemic ApoE(-/-) mice accelerated the development of macrophage-rich, inflammatory atherosclerotic lesions. We now investigated the mechanism underlying the development of radiation-induced atherosclerosis.

Materials And Methods: ApoE(-/-) and wildtype C57BL/6J mice received 0, 8 or 14 Gy to the neck and the carotid arteries were harvested 1 day, 1 or 4 weeks later.

View Article and Find Full Text PDF

Background And Purpose: We previously showed that irradiating the carotid arteries of ApoE(-/-) mice accelerated the development of macrophage-rich, inflammatory and thrombotic atherosclerotic lesions. In this study we investigated the potential of anti-inflammatory (atorvastatin, CD40L knockout) and anti-thrombotic (clopidogrel) intervention strategies to inhibit radiation-induced atherosclerosis.

Material And Methods: ApoE(-/-) mice were given 0 or 14 Gy to the neck and the carotid arteries were harvested at 4 or 28 weeks after irradiation.

View Article and Find Full Text PDF

Background: We previously showed that irradiation to the carotid arteries of ApoE(-/-) mice accelerated the development of macrophage-rich, inflammatory atherosclerotic lesions, prone to intra-plaque hemorrhage. In this study we investigated the potential of anti-inflammatory and anti-coagulant intervention strategies to inhibit age-related and radiation-induced atherosclerosis.

Methodology/principal Findings: ApoE(-/-) mice were given 0 or 14 Gy to the neck and the carotid arteries and aortic arches were harvested at 4 or 30 weeks after irradiation.

View Article and Find Full Text PDF

The purpose of this study was to investigate the long-term effects of radiation-induced alterations in TGF-beta signaling pathways with respect to the development of vascular damage in the irradiated kidney. Total RNA was isolated from mouse kidneys at 1-30 weeks after irradiation, and quantitative real-time PCR analyses were performed for TGF-beta receptors (ALK1, ALK5, endoglin), downstream mediators (Smad7, CTGF), and downstream targets (PAI-1 and Id-1). Expression of endoglin and Smad7 protein as well as nucleo-cytoplasmic distribution of phospho Smad 2/3 and phospho Smad 1/5 was analyzed by immunohistochemistry.

View Article and Find Full Text PDF

Purpose: Increased risk of atherosclerosis and stroke has been demonstrated in patients receiving radiotherapy for Hodgkin's lymphoma and head-and-neck cancer. We previously showed that 14 Gy to the carotid arteries of hypercholesterolemic ApoE(-/-) mice resulted in accelerated development of macrophage-rich, inflammatory atherosclerotic lesions. Here we investigate whether clinically relevant fractionated irradiation schedules and lower single doses also predispose to an inflammatory plaque phenotype.

View Article and Find Full Text PDF

Radiation-induced impairment of renal function is preceded by capillary endothelial cell damage, which initiates a cascade of inflammatory and thrombotic events. Accumulation of leukocytes in the irradiated kidney, especially in areas surrounding the glomeruli, has been clearly demonstrated. The chemokine fractalkine has recently been identified as a key mediator of leukocyte adhesion that functions without the requirement of integrins or selectin-mediated rolling.

View Article and Find Full Text PDF

Purpose: Radiation-induced vascular injury can be a serious problem for cancer survivors. In capillary vessels, this manifests as telangiectasia, causing cosmetic problems when occurring in the skin and more serious problems, e.g.

View Article and Find Full Text PDF

Irradiation of the kidney induces dose-dependent, progressive renal functional impairment, which is partly mediated by vascular damage. The molecular mechanisms underlying the development of radiation-induced nephropathy are unclear. Given the complexity of radiation-induced responses, microarrays may offer new opportunities to identify a wider range of genes involved in the development of radiation injury.

View Article and Find Full Text PDF