Bioaugmentation often involves an invasion process requiring the establishment and activity of a foreign microbe in the resident community of the target environment. Interactions with resident micro-organisms, either antagonistic or cooperative, are believed to impact invasion. However, few studies have examined the variability of interactions between an invader and resident species of its target environment, and none of them considered a bioremediation context.
View Article and Find Full Text PDFSand filters (SFs) are commonly applied in drinking water treatment plants (DWTPs) for removal of iron and manganese but also show potential for microbial degradation of pesticide residues. The latter is advantageous in case the intake water contains pesticide residues. However, whether this involves mineralization suggesting no generation of harmful transformation products, its consistency over time, and how this ability relates to physicochemical and biological characteristics of the DWTP intake water and the SFs is unknown.
View Article and Find Full Text PDFThe microbial community in sand filters (SFs) of drinking water treatment plants (DWTPs) likely contributes to SF functionalities, such as organic carbon removal through heterotrophic metabolism. However, the dynamics and functionality of the SF microbiome and microbial communities in oligotrophic freshwater environments in general, are poorly understood. Therefore, the availability of bacterial strains from these oligotrophic environments is of great interest, but such organisms are currently underrepresented in culture collections.
View Article and Find Full Text PDFAminobacter sp. MSH1 immobilized in an alginate matrix in porous stones was tested in a pilot system as an alternative inoculation strategy to the use of free suspended cells for biological removal of micropollutant concentrations of 2,6-dichlorobenzamide (BAM) in drinking water treatment plants (DWTPs). BAM removal rates and MSH1 cell numbers were recorded during operation and assessed with specific BAM degradation rates obtained in lab conditions using either freshly grown cells or starved cells to explain reactor performance.
View Article and Find Full Text PDFWe report here the draft genome sequence of Aeromonas sp. strain EERV15 isolated from sand filter. The organism most closely related to Aeromonas sp.
View Article and Find Full Text PDFThe intrinsic capacity to mineralize the groundwater pollutant 2,6-dichlorobenzamide (BAM) and its metabolite 2,6-dichlorobenzoic acid (2,6-DCBA) was evaluated in samples from sand filters (SFs) of drinking water treatment plants (DWTPs). Whereas BAM mineralization occurred rarely and only in SFs exposed to BAM, 2,6-DCBA mineralization was common in SFs, including those treating uncontaminated water. Nevertheless, SFs treating BAM contaminated water showed the highest 2,6-DCBA mineralization rates.
View Article and Find Full Text PDFIn recent years, the application of pesticide biodegradation in remediation of pesticide-contaminated matrices moved from remediating bulk soil to remediating and mitigating pesticide pollution of groundwater and surface water bodies. Specialized pesticide-degrading microbial populations are used, which can be endogenous to the ecosystem of interest or introduced by means of bioaugmentation. It involves (semi-)natural ecosystems like agricultural fields, vegetated filter strips, and riparian wetlands and man-made ecosystems like on-farm biopurification systems, groundwater treatment systems, and dedicated modules in drinking water treatment.
View Article and Find Full Text PDFEffects of environmental dissolved organic matter (eDOM) that consists of various low concentration carbonic compounds on pollutant biodegradation by bacteria are poorly understood, especially when it concerns synergistic xenobiotic-degrading consortia where degradation depends on interspecies metabolic interactions. This study examines the impact of the quality and quantity of eDOM, supplied as secondary C-source, on the structure, composition and pesticide-degrading activity of a triple-species bacterial consortium in which the members synergistically degrade the phenylurea herbicide linuron, when grown as biofilms. Biofilms developing on 10 mg L⁻¹ linuron showed a steady-state linuron degradation efficiency of approximately 85 %.
View Article and Find Full Text PDFIn nature, pesticides are often present as micropollutants with concentrations too low for efficient biodegradation and growth of heterotrophic pollutant-degrading bacteria. Instead, organic carbon present in environmental dissolved organic matter (eDOM) constitutes the main carbon source in nature. Information on how natural organic carbon affects degradation of pollutants and micropollutants, in particular, is however poor.
View Article and Find Full Text PDFDissolved organic matter (DOM) is the primary environmental carbon source for heterotrophic bacteria and its quality and quantity have been shown to affect microbial community structure and functioning. In that context, it was examined whether a bacterial consortium synergistically degrading the herbicide linuron extends this synergism toward natural DOM degradation. Biodegradable dissolved organic carbon (BDOC) of DOM of various origins and concomitant growth was determined for the consortium members in isolation and in combination.
View Article and Find Full Text PDF