A long-standing mystery in the field of Polycomb and Trithorax regulation is how these proteins, which are highly conserved between flies and mammals, can regulate several hundred equally highly conserved target genes, but recognise these targets via cis-regulatory elements that appear to show no conservation in their DNA sequence. These elements, termed Polycomb/Trithorax response elements (PRE/TREs or PREs), are relatively well characterised in flies, but their mammalian counterparts have proved to be extremely difficult to identify. Recent progress in this endeavour has generated a wealth of data and raised several intriguing questions.
View Article and Find Full Text PDFPolycomb/Trithorax response elements (PRE/TREs) can switch their function reversibly between silencing and activation by mechanisms that are poorly understood. Here we show that a switch in forward and reverse noncoding transcription from the Drosophila melanogaster vestigial (vg) PRE/TRE switches the status of the element between silencing (induced by the forward strand) and activation (induced by the reverse strand). In vitro, both noncoding RNAs inhibit PRC2 histone methyltransferase activity, but, in vivo, only the reverse strand binds PRC2.
View Article and Find Full Text PDFPax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications.
View Article and Find Full Text PDF