Background: Salt intake in CKD patients can affect cardiovascular risk and kidney disease progression. Twenty-four hour (24h) urine collections are often used to investigate salt metabolism but are cumbersome to perform. We assessed urinary sodium (U-Na) concentration in spot urine samples and investigated the correlation with 24h U-Na excretion and concentration in CKD patients under nephrological care.
View Article and Find Full Text PDFExperimental studies often fail to translate to clinical practice. Humanized mouse models are an important tool to close this gap. We immunophenotyped the kidneys of NOG (EXL) and NSG mouse strains engrafted with human CD34 + hematopoietic stem cells or PBMCs and compared with immune cell composition of normal human kidney.
View Article and Find Full Text PDFT cells are important in the pathogenesis of acute kidney injury (AKI), and TCRCD4CD8 (double negative-DN) are T cells that have regulatory properties. However, there is limited information on DN T cells compared to traditional CD4 and CD8 cells. To elucidate the molecular signature and spatial dynamics of DN T cells during AKI, we performed single-cell RNA sequencing (scRNA-seq) on sorted murine DN, CD4, and CD8 cells combined with spatial transcriptomic profiling of normal and post AKI mouse kidneys.
View Article and Find Full Text PDFT cells play an important role in acute kidney injury (AKI). Metabolic programming of T cells regulates their function, is a rapidly emerging field, and is unknown in AKI. We induced ischemic AKI in C57BL/6J mice and collected kidneys and spleens at multiple time points.
View Article and Find Full Text PDFSignificance Statement: T cells mediate pathogenic and reparative processes during AKI, but the exact mechanisms regulating kidney T cell functions are unclear. This study identified upregulation of the novel immune checkpoint molecule, TIGIT, on mouse and human kidney T cells after AKI. TIGIT-expressing kidney T cells produced proinflammatory cytokines and had effector (EM) and central memory (CM) phenotypes.
View Article and Find Full Text PDFT cells play pathophysiologic roles in kidney ischemia-reperfusion injury (IRI), and the nuclear factor erythroid 2-related factor 2/kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway regulates T cell responses. We hypothesized that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated -knockout (KO) augments Nrf2 antioxidant potential of CD4+ T cells, and that -KO CD4+ T cell immunotherapy protects from kidney IRI. CD4+ T cell -KO resulted in significant increase of Nrf2 target genes NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit.
View Article and Find Full Text PDFDouble negative (DN) T cells, one of the least studied T lymphocyte subgroups, express T cell receptor αβ but lack CD4 and CD8 coreceptors. DN T cells are found in multiple organs including kidney, lung, heart, gastrointestinal tract, liver, genital tract, and central nervous system. DN T cells suppress inflammatory responses in different disease models including experimental acute kidney injury, and significant evidence supports an important role in the pathogenesis of systemic lupus erythematosus.
View Article and Find Full Text PDFInnate and adaptive immune systems participate in the pathogenesis of acute kidney injury (AKI). Considerable data from different research teams have shown the importance of T lymphocytes in the pathophysiology of AKI and, more recently, prevention and repair. T cells can generate or resolve inflammation by secreting specific cytokines and growth factors as well as interact with other immune and stromal cells to induce kidney injury or promote tissue repair.
View Article and Find Full Text PDFAcute kidney injury (AKI) due to cisplatin is a significant problem that limits its use as an effective chemotherapeutic agent. T cell receptorCD4CD8 double negative (DN) T cells constitute the major T cell population in the human and mouse kidney, express programmed cell death protein (PD)-1, and protect from ischemic AKI. However, the pathophysiological roles of DN T cells in cisplatin-induced AKI is unknown.
View Article and Find Full Text PDFCD4 T cells mediate the pathogenesis of ischemic and nephrotoxic acute kidney injury (AKI). However, the underlying mechanisms of CD4 T cell-mediated pathogenesis are largely unknown. We therefore conducted unbiased RNA-sequencing to discover novel mechanistic pathways of kidney CD4 T cells after ischemia compared with normal mouse kidney.
View Article and Find Full Text PDFAcute organ injuries such as acute cerebrovascular accidents, myocardial infarction, acute kidney injury, acute lung injury, and others are among the leading causes of death worldwide. Dysregulated or insufficient organ repair mechanisms limit restoration of homeostasis and contribute to chronic organ failure. Studies reveal that both humans and mice harness potent non-stem cells that are capable of directly or indirectly promoting tissue repair.
View Article and Find Full Text PDF