Publications by authors named "Johanna Stenqvist"

Urinary bladder dysfunction might be related to disturbances at different levels of the micturition reflex arc. The current study aimed to further develop and evaluate a split bladder model for detecting and analysing relaxatory signalling in the rat urinary bladder. The model allows for discrimination between effects at the efferent and the afferent side of the innervation.

View Article and Find Full Text PDF

Due to its chemical properties, functional responses to nitric oxide (NO) are often difficult to examine. In the present study, we established a method to produce NO in an aqueous solution and validated its capacity to evoke functional responses in isolated rat bladders. Furthermore, we compared the NO responses to the commonly used NO donor sodium nitroprusside (SNP).

View Article and Find Full Text PDF

While acetylcholine is regarded to be the main directly contractile transmitter substance in the urinary bladder, interactions with other transmitters likely occur. Presently, the interplay between purinergic and cholinergic signalling was investigated to unravel the involvement of the urothelium and efferent neurons in the functionally important purinergically evoked release of acetylcholine in vitro. Functional characterization of receptor subtypes involved in this interplay was also performed.

View Article and Find Full Text PDF

Mechanical stretch of the urothelium induces the release of ATP that activates bladder afferent nerves. In the rat urinary bladder, ATP is also a contractile co-transmitter in the parasympathetic innervation. In isolated preparations, ATP evokes a urothelial release of acetylcholine that substantially contributes to ATP-evoked contractile responses.

View Article and Find Full Text PDF

Cholesterol rich membrane invaginations, caveolae, have important roles in various cellular activities, one of them being signal transduction. This signaling pathway seems to be affected during various bladder disorders and the current study aimed to elucidate the plausible involvement of caveolae mediated signal transduction during cyclophosphamide induced cystitis. Furthermore, the urothelial cholinergic part of ATP-evoked contractions and its possible link to caveolae were investigated.

View Article and Find Full Text PDF

Both acetylcholine and adenosine 5'-triphosphate (ATP) are released from the urothelium. In in vivo experiments ATP has been shown to evoke contractile responses that are significantly reduced by atropine. Currently, we aimed to examine the cholinergic part of the ATP-evoked contractile response of normal and inflamed (cyclophosphamide-treated rats) bladders.

View Article and Find Full Text PDF