Proc Natl Acad Sci U S A
March 2019
In most eukaryotes, organellar genomes are transmitted preferentially by the mother, but molecular mechanisms and evolutionary forces underlying this fundamental biological principle are far from understood. It is believed that biparental inheritance promotes competition between the cytoplasmic organelles and allows the spread of so-called selfish cytoplasmic elements. Those can be, for example, fast-replicating or aggressive chloroplasts (plastids) that are incompatible with the hybrid nuclear genome and therefore maladaptive.
View Article and Find Full Text PDFSpontaneous plastome mutants have been used as a research tool since the beginning of genetics. However, technical restrictions have severely limited their contributions to research in physiology and molecular biology. Here, we used full plastome sequencing to systematically characterize a collection of 51 spontaneous chloroplast mutants in Oenothera (evening primrose).
View Article and Find Full Text PDFWhy the DNA-containing organelles, chloroplasts, and mitochondria, are inherited maternally is a long standing and unsolved question. However, recent years have seen a paradigm shift, in that the absoluteness of uniparental inheritance is increasingly questioned. Here, we review the field and propose a unifying model for organelle inheritance.
View Article and Find Full Text PDFWhen cyanobacteria are starved for nitrogen, expression of the NblA protein increases and thereby induces proteolytic degradation of phycobilisomes, light-harvesting complexes of pigmented proteins. Phycobilisome degradation leads to a color change of the cells from blue-green to yellow-green, referred to as bleaching or chlorosis. As reported previously, NblA binds via a conserved region at its C terminus to the alpha-subunits of phycobiliproteins, the main components of phycobilisomes.
View Article and Find Full Text PDF