J Microbiol Biol Educ
March 2018
Scientific terminology presents an obstacle to effective communication with nonscientific audiences. To overcome this obstacle, biology majors in a general microbiology elective completed a project involving two different audiences: a scientific audience of their peers and a general, nonscientific audience. First, students presented an overview of a primary research paper and the significance of its findings to a general, nonscientific audience in an elevator-type talk.
View Article and Find Full Text PDFPseudomonas aeruginosa (Pae) is a clinically important opportunistic pathogen. Herein, we demonstrate that the PA1006 protein is critical for all nitrate reductase activities, growth as a biofilm in a continuous flow system, as well as virulence in mouse burn and rat lung model systems. Microarray analysis revealed that ΔPA1006 cells displayed extensive alterations in gene expression including nitrate-responsive, quorum sensing (including PQS production), and iron-regulated genes, as well as molybdenum cofactor and Fe-S cluster biosynthesis factors, members of the TCA cycle, and Type VI Secretion System components.
View Article and Find Full Text PDFA companion manuscript revealed that deletion of the Pseudomonas aeruginosa (Pae) PA1006 gene caused pleiotropic defects in metabolism including a loss of all nitrate reductase activities, biofilm maturation, and virulence. Herein, several complementary approaches indicate that PA1006 protein serves as a persulfide-modified protein that is critical for molybdenum homeostasis in Pae. Mutation of a highly conserved Cys22 to Ala or Ser resulted in a loss of PA1006 activity.
View Article and Find Full Text PDFPathogen evolution and subsequent phenotypic heterogeneity during chronic infection are proposed to enhance Staphylococcus aureus survival during human infection. We tested this theory by genetically and phenotypically characterizing strains with mutations constructed in the mismatch repair (MMR) and oxidized guanine (GO) system, termed mutators, which exhibit increased spontaneous-mutation frequencies. Analysis of these mutators revealed not only strain-dependent increases in the spontaneous-mutation frequency but also shifts in mutational type and hot spots consistent with loss of GO or MMR functions.
View Article and Find Full Text PDFMoraxella catarrhalis is a causative agent of otitis media in children and lower respiratory tract infections in adults suffering from chronic obstructive pulmonary disease (COPD). This strict human pathogen continues to be a significant cause of disease in this broad spectrum of patients because there is no available vaccine. Although numerous putative vaccine antigens have been described, little is known about the human immune response to M.
View Article and Find Full Text PDFMoraxella catarrhalis express three predominant forms of lipooligosaccharide (LOS) molecules on the bacterial surface. These major glycolipids contain specific carbohydrate epitopes that distinguish each glycoform into serotype A, B, or C LOS. All three serotypes, however, share a common glucose containing inner-core structure, consisting of an alpha-glucose attached to 2-keto-3-deoxyoctulosonic acid (KDO), which is unique among Gram-negative bacteria.
View Article and Find Full Text PDFA heterologous cluster of glycosyltransferase genes was identified in the three Moraxella catarrhalis LOS serotype strains. Multiple PCR primers designed to this region amplified products that differentiate between the serotypes more rapidly and efficiently than previously described serological analyses. This assay will be valuable for clinical and research-based studies.
View Article and Find Full Text PDF