Unlabelled: Volumetric additive manufacturing is a novel fabrication method allowing rapid, freeform, layer-less 3D printing. Analogous to computer tomography (CT), the method projects dynamic light patterns into a rotating vat of photosensitive resin. These light patterns build up a three-dimensional energy dose within the photosensitive resin, solidifying the volume of the desired object within seconds.
View Article and Find Full Text PDFThe genus Kieffer (Scelionidae: Scelioninae) is known only from the Old World: Kenya, Tanzania, Malawi, South Africa, Madagascar, southern India, the island of New Guinea, and eastern Australia. After revision, 10 species are recognized. Four species were previously recognized and are redescribed: Risbec (Madagascar), Saraswat (India: Kerala), Kieffer (Australia: Queensland), and Dodd (Australia: Queensland).
View Article and Find Full Text PDFAlkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity.
View Article and Find Full Text PDFThree-dimensional printing, or additive manufacturing (AM), is a broad term for a wide range of fabrication methods utilizing materials such as small-molecule, polymer, and metal feedstocks. Each method requires different chemical, physical, and engineering needs to be successful. This article will discuss some of the considerations for polymer-based AM methods.
View Article and Find Full Text PDFNanofabrication techniques that can generate large and complex 3D structures with nanoscale features are becoming increasingly important in the fields of biomedicine, micro-optics, and microfluidics. Direct laser writing two-photon polymerization (DLW-TPP) is one such technique that relies on nonlinear absorption of light to form nanoscale 3D features. Although DLW-TPP provides the required nanoscale resolution, its built height is often limited to less than a millimetre.
View Article and Find Full Text PDFVolumetric additive manufacturing (VAM) forms complete 3D objects in a single photocuring operation without layering defects, enabling 3D printed polymer parts with mechanical properties similar to their bulk material counterparts. This study presents the first report of VAM-printed thiol-ene resins. With well-ordered molecular networks, thiol-ene chemistry accesses polymer materials with a wide range of mechanical properties, moving VAM beyond the limitations of commonly used acrylate formulations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2017
A series of photoresins suitable for the production of elastomeric objects via digital light processing additive manufacturing are reported. Notably, the printing procedure is readily accessible using only entry-level equipment under ambient conditions using visible light projection. The photoresin formulations were found to be modular in nature, and straightforward adjustments to the resin components enabled access to a range of compositions and mechanical properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2016
We describe an efficient method to produce objects comprising spatially controlled and graded cross-link densities using vat photopolymerization additive manufacturing (AM). Using a commercially available diacrylate-based photoresin, 3D printer, and digital light processing (DLP) projector, we projected grayscale images to print objects in which the varied light intensity was correlated to controlled cross-link densities and associated mechanical properties. Cylinder and bar test specimens were used to establish correlations between light intensities used for printing and cross-link density in the resulting specimens.
View Article and Find Full Text PDF