Publications by authors named "Johanna Saunier"

is an important pathogen for humans with a lead in nosocomial infection, but it is also more and more common in communities. Our knowledge of the pathology has historically been focused on the toxins produced by the bacteria that remain its major virulence factors. But the dysbiosis of the intestinal microbiota creating the conditions for the colonization appears to be fundamental for our understanding of the disease.

View Article and Find Full Text PDF

The impact of ethanol locks on the mechanical performances of central venous catheters was compared to that of aqueous-based locks. Several mechanical tests were performed to evaluate catheter behavior: kinking radius measurements, burst pressure, and tensile tests. Different polyurethanes were studied to assess the impact of radio-opaque charge and polymer chemical composition on catheter behavior.

View Article and Find Full Text PDF

This article investigates the impact of the interactions between polyurethane central venous catheters and solutions containing excipients used in cisplatin and paclitaxel formulations. Changes to the properties of catheters and the leaching of catheter additives into the infused solutions were studied while these solutions were infused cyclically for several months. Chemotherapy treatment was mimicked in vitro in compliance with hospital practices.

View Article and Find Full Text PDF

We study the effect of simulated biological aging on the properties of cyclic olefin copolymers and particularly their biocompatibility. Already reported as biocompatible polymers according to ISO/EN 10993 guidelines, COC are good candidates for medical devices. The influence of two major additives (antioxidants and lubricants) was investigated and comparison with non-aging COC was done.

View Article and Find Full Text PDF

Photooxidation and hydrolysis are the two primary aging factors of intraocular lenses. Opacifications, dislocations, glistening and yellowing of the implanted acrylic lenses, which are due to chain scissions and depolymerization, are the consequences of aging from the clinical perspective. The purpose of this study was to examine the consequence of the aging of intraocular lenses on chemical and surface properties.

View Article and Find Full Text PDF

This work reports the biocompatibility evaluation of cyclic olefin copolymers (COC) as candidates for implantable medical devices. The focus was to establish the influence of two major additives (antioxidant and lubricant) on the overall biocompatibility. The cytotoxicity was evaluated according to ISO 10993-5 guidelines using L929 fibroblasts, HUVEC, and THP-1-derived macrophages.

View Article and Find Full Text PDF

Surface state is one of the most important parameters determining the biocompatibility of an implantable medical device, any change on the surface once in contact with body tissues can impact the biological response (cytotoxicity, inflammation, irritation, thrombosis, etc.). In the present study, we use (Pellethane ) catheter-based polyurethane (PU), because of its many applications in the field of medical devices, to evaluate the impact of additives blooming on the biocompatibility.

View Article and Find Full Text PDF

Medical device-related infections are a major problem in hospital. The risk of developing an infection is linked to the bacterial adhesion ability of pathogen strains on the device and their ability to form a biofilm. Here we focused on polymer surfaces exhibiting a blooming of antioxidant (Irganox 3114® and Irganox 1076®) on their surface.

View Article and Find Full Text PDF

The aim of this study is to investigate in vitro interactions between hydrophobic acrylate intraocular lenses (IOLs) and their biological environment. The influence of lens chemical composition and aging on fibronectin (FN) adsorption and on IOLs cytotoxicity on human lens epithelial cells was examined. Cytotoxicity of acrylate monomers used in IOLs manufacture was also investigated.

View Article and Find Full Text PDF

A cyclo-olefin copolymer was subjected to an e-beam ionizing treatment. Two doses were studied: one corresponding to the recommended dose for the sterilization of pharmaceutical packaging (25 kGy), and a greater one to enhance the modifications caused by the treatment (150 kGy). The surface modifications were studied by X-ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM).

View Article and Find Full Text PDF

Polyurethane catheters made of Pellethane 2363-80AE® were treated with a low temperature plasma developed for the decontamination of reusable polymer devices in hospitals. We investigated the modifications of the polymer surface by studying the topographic modifications, the chemical modifications, and their consequences on the wettability and bacterial adhesion. This study showed that plasma treatment modified the topography and grafted oxygen and nitrogen species onto the surface, resulting in an increase in the surface polarity.

View Article and Find Full Text PDF

Irganox 1076(R) (octadecyl-3,5-di-tert-butyl-4-hydroxyhydrocinnamate) is a common phenolic antioxidant used in many polymer-based medical devices. As with many organic compounds, several polymorphs exist. However, in literature, only two forms of Irganox 1076(R) have been mentioned.

View Article and Find Full Text PDF