The translation inhibitor and tumor suppressor Pdcd4 was reported to be lost in various tumors and put forward as prognostic marker in tumorigenesis. Decreased Pdcd4 protein stability due to PI3K-mTOR-p70S6K1 dependent phosphorylation of Pdcd4 followed by β-TrCP1-mediated ubiquitination, and proteasomal destruction of the protein was characterized as a major mechanism contributing to the loss of Pdcd4 expression in tumors. In an attempt to identify stabilizers of Pdcd4, we used a luciferase-based high-throughput compatible cellular assay to monitor phosphorylation-dependent proteasomal degradation of Pdcd4 in response to mitogen stimulation.
View Article and Find Full Text PDFA cell-based high-throughput screen that assessed the cellular stability of a tumor suppressor protein PDCD4 (Programmed cell death 4) was used to identify a new guanidine-containing marine alkaloid mirabilin K (3), as well as the known compounds mirabilin G (1) and netamine M (2). The structures of these tricyclic guanidine alkaloids were established from extensive spectroscopic analyses. Compounds 1 and 2 inhibited cellular degradation of PDCD4 with EC50 values of 1.
View Article and Find Full Text PDFDeregulation of the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR)-70kDa ribosomal protein S6 kinase 1 (p70(S6K)) pathway is commonly observed in many tumors. This pathway controls proliferation, survival, and translation, and its overactivation is associated with poor prognosis for tumor-associated survival. Current efforts focus on the development of novel inhibitors of this pathway.
View Article and Find Full Text PDFLoss of the tumor suppressor Pdcd4 was reported for various tumor entities and proposed as a prognostic marker in tumorigenesis. We previously characterized decreased Pdcd4 protein stability in response to mitogenic stimuli, which resulted from p70(S6K1)-dependent protein phosphorylation, β-TrCP1-mediated ubiquitination, and proteasomal destruction. Following high-throughput screening of natural product extract libraries using a luciferase-based reporter assay to monitor phosphorylation-dependent proteasomal degradation of the tumor suppressor Pdcd4, we succeeded in showing that a crude extract from Eriophyllum lanatum stabilized Pdcd4 from TPA-induced degradation.
View Article and Find Full Text PDFAdjusting translation is crucial for cells to rapidly adapt to changing conditions. While pro-proliferative signaling via the PI3K-mTOR-pathway is known to induce cap-dependent translation, stress conditions, such as nutrient deprivation or hypoxia often activate alternative modes of translation, e.g.
View Article and Find Full Text PDFOur current natural product program utilizes new actinomycetes originating from unexplored and underexplored ecological niches, employing cytotoxicity against a selected panel of cancer cell lines as the preliminary screen to identify hit strains for natural product dereplication, followed by mechanism-based assays of the purified natural products to discover potential anticancer drug leads. Three new linear polyketides, actinopolysporins A (1), B (2), and C (3), along with the known antineoplastic antibiotic tubercidin (4), were isolated from the halophilic actinomycete Actinopolyspora erythraea YIM 90600, and the structures of the new compounds were elucidated on the basis of spectroscopic data interpretation. All four compounds were assayed for their ability to stabilize the tumor suppressor programmed cell death protein 4 (Pdcd4), which is known to antagonize critical events in oncogenic pathways.
View Article and Find Full Text PDFThe tumor suppressor programmed cell death 4 (Pdcd4) is lost in various tumor tissues. Loss of Pdcd4 has been associated with increased tumorigenic potential and tumor progression. While various mechanisms of Pdcd4 regulation have been described, the effect of an inflammatory tumor microenvironment on Pdcd4 protein expression has not been characterized so far.
View Article and Find Full Text PDFA high-throughput cell-based reporter assay designed to identify small-molecule stabilizers of the tumor suppressor Pdcd4 was used to screen extracts in the NCI Natural Products Repository. Bioassay-guided fractionation of an extract from a Papua New Guinea collection of the tropical tree Cryptocarya sp. provided a series of new 5,6-dihydro-α-pyrone-containing 1,3-polyols (1-8), named cryptocaryols A-H.
View Article and Find Full Text PDFThe novel tumor suppressor Pdcd4 affects tumorigenesis by inhibiting translation. Pdcd4 is phosphorylated and subsequently lost by proteasomal degradation in response to tumor-promoting conditions. Here, the authors describe the development of a reporter cell system to monitor the stability of Pdcd4.
View Article and Find Full Text PDF