Publications by authors named "Johanna Recktenwald"

In a short-term model of hyperosmotic stress, primary murine astrocytes were stimulated with a hyperosmolar sucrose solution for five minutes. Astrocytic gap junctions, which are mainly composed of Connexin (Cx) 43, displayed immediate ultrastructural changes, demonstrated by freeze-fracture replica immunogold labeling: their area, perimeter, and distance of intramembrane particles increased, whereas particle numbers per area decreased. Ultrastructural changes were, however, not accompanied by changes in Cx43 mRNA expression.

View Article and Find Full Text PDF

In the intact brain, astrocytes play an important role in a number of physiological functions like spatial buffering of potassium, maintenance of calcium homeostasis, neurotransmitter release, regulation of the cerebral blood flow, and many more. As pathophysiological events upon hypoxic-ischemic brain injury include excitotoxicity by glutamate release as well as oxidative stress, astrocytes and their gap junction-based syncytium are of major relevance for regulating the extent of resulting brain damage. The gap junction protein Connexin (Cx) 43 contributes mainly to the astrocytic intercellular communication.

View Article and Find Full Text PDF