Publications by authors named "Johanna Pispa"

Polyubiquitinated proteins are primarily degraded by the ubiquitin-proteasome system (UPS). Proteasomes are present both in the cytoplasm and nucleus. Here, we investigated mechanisms coordinating proteasome subcellular localization and activity in a multicellular organism.

View Article and Find Full Text PDF

Variation in ambient growth temperature can cause changes in normal animal physiology and cellular functions such as control of protein homeostasis. A key mechanism for maintaining proteostasis is the selective degradation of polyubiquitinated proteins, mediated by the ubiquitin-proteasome system (UPS). It is still largely unsolved how temperature changes affect the UPS at the organismal level.

View Article and Find Full Text PDF

Mesenchymal condensation is a critical step in organogenesis, yet the underlying molecular and cellular mechanisms remain poorly understood. The hair follicle dermal condensate is the precursor to the permanent mesenchymal unit of the hair follicle, the dermal papilla, which regulates hair cycling throughout life and bears hair inductive potential. Dermal condensate morphogenesis depends on epithelial Fibroblast Growth Factor 20 (Fgf20).

View Article and Find Full Text PDF

The development of ectodermal organs requires signalling by ectodysplasin (Eda), a tumor necrosis factor (TNF) family member, its receptor Edar and downstream activation of the nuclear factor kappaB (NF-kappaB) transcription factor. In humans, mutations in the Eda pathway components cause hypohidrotic ectodermal dysplasia, a syndrome characterized by missing teeth, sparse hair and defects in sweat glands. It has been postulated that Eda acts redundantly with another TNF pathway to regulate ectodermal organogenesis.

View Article and Find Full Text PDF

Background: Dss1 (or Rpn15) is a recently identified subunit of the 26S proteasome regulatory particle. In addition to its function in the protein degradation machinery, it has been linked to BRCA2 (breast cancer susceptibility gene 2 product) and homologous DNA recombination, mRNA export, and exocytosis. While the fungal orthologues of Dss1 are not essential for viability, the significance of Dss1 in metazoans has remained unknown due to a lack of knockout animal models.

View Article and Find Full Text PDF

The single copy Drosophila alpha-actinin gene is alternatively spliced to generate three different isoforms that are expressed in larval muscle, adult muscle and non-muscle cells, respectively. We have generated novel alpha-actinin alleles, which specifically remove the non-muscle isoform. Homozygous mutant flies are viable and fertile with no obvious defects.

View Article and Find Full Text PDF

Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice.

View Article and Find Full Text PDF

Signaling by Edar, a tumor necrosis factor receptor, is required for the development of ectodermal organs. Mutations in Edar or other molecules of the same signaling pathway cause ectodermal dysplasias in humans and mice. In these diseases, teeth are missing or malformed, and the development of hairs and several glands is hypoplastic.

View Article and Find Full Text PDF

Genetic susceptibility for psoriasis is regulated to the greatest extent by the PSORS1 locus. Three psoriasis-associated susceptibility alleles have been identified within it, namely, HLACw6, HCR*WWCC and CDSN*5, but strong linkage disequilibrium between them has made it difficult to distinguish their individual genetic effects, and animal models to study their effects are not known. To study the function of HCR, we engineered transgenic mice with either a non-risk allele of HCR or the HCR*WWCC risk allele under the control of the cytokeratin-14 promoter.

View Article and Find Full Text PDF

All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme.

View Article and Find Full Text PDF

Ectodysplasin (Eda), a member of the tumor necrosis factor (TNF) superfamily, and its receptor Edar are necessary components of ectodermal organ development. Analysis of their expression patterns and mutant phenotypes has shown that during mouse hair and tooth development they may be involved in signalling between separate epithelial compartments. Here we have analysed ectodysplasin and Edar expression in other embryonic mouse tissues, and show that Edar mRNA is confined to the epithelium.

View Article and Find Full Text PDF

Organs developing as ectodermal appendages share similar early morphogenesis and molecular mechanisms. Ectodysplasin, a signaling molecule belonging to the tumor necrosis factor family, and its receptor Edar are required for normal development of several ectodermal organs in humans and mice. We have overexpressed two splice forms of ectodysplasin, Eda-A1 and Eda-A2, binding to Edar and another TNF receptor, Xedar, respectively, under the keratin 14 (K14) promoter in the ectoderm of transgenic mice.

View Article and Find Full Text PDF

X-linked and autosomal forms of anhidrotic ectodermal dysplasia syndromes (HED) are characterized by deficient development of several ectodermal organs, including hair, teeth and exocrine glands. The recent cloning of the genes that underlie these syndromes, ectodysplasin (ED1) and the ectodysplasin A receptor (EDAR), and their identification as a novel TNF ligand-receptor pair suggested a role for TNF signaling in embryonic morphogenesis. In the mouse, the genes of the spontaneous mutations Tabby (Ta) and downless (dl) were identified as homologs of ED1 and EDAR, respectively.

View Article and Find Full Text PDF