The robust thermoresponsive and bioactive surfaces for tissue engineering by combining poly--isopropylacrylamide (PNIPAM) and cellulose sulfate (CS) remain highly in demand but not yet realized. Herein, PNIPAM-grafted cellulose sulfates (PCSs) with diverse degrees of substitution ascribed to sulfate groups (DS) are synthesized for the first time. Higher sulfated PCS2 generally forms larger aggregates than lower sulfated PCS1 at their cloud point temperatures (TCP) of around 33 °C, whereas PCS1 leads to larger aggregates at body temperature (37 °C).
View Article and Find Full Text PDF