Publications by authors named "Johanna Manegold"

Terphenylgermanium Ar*Ge [Ar*=CH(2,6-Trip), Trip=2,4,6-CHiPr] was found to act as a novel μ-Ge-bis(hexahapto-Trip) bridging ligand. Deprotonated terphenyl germanium trihydride [Li(thf)][Ar*GeH] (1) undergoes reductive elimination and transfer of hydrogen in reaction with dimeric [(COD)RhCl] to yield the dinuclear complex [Ar*GeRh(COE)RhCl(COD)] (2). Subsequent chloride abstraction from compound 2 using Na[BAr ] or Li[Al(OBu)] results in the cationic complexes [Ar*GeRh(COE)Rh(COD)][WCA] (3) {WCA: [BAr ] (Ar=CH-3,5-(CF)), [Al(OBu)]}.

View Article and Find Full Text PDF

The dominating catalytic approach to aromatic hydrocarbons from renewables, deoxygenation of phenol-rich depolymerized lignin bio-oils, is hard to achieve: hydrodeoxygenation (HDO) of phenols typically leads to the loss of aromaticity and to non-negligible fractions of cyclohexanones and cyclohexanols. Here, we report a catalyst, niobia-supported iridium nanoparticles (Ir@NbO), which combines full conversion in the HDO of lignin-derived phenols with appreciable and tunable selectivity for aromatics (25-95%) under mild conditions (200-300 °C, 2.5-10 bar of H).

View Article and Find Full Text PDF

This work introduces new hardware configurations for a capacitively coupled contactless conductivity detector (C D) based on capacitance-to-digital conversion (CDC) technology for CE. The aim was to improve sensitivity, handling, price, and portability of CDC-based C D detectors (CDCD) to reach LODs similar to classic C Ds with more sophisticated electric circuits. To achieve this, a systematic study on the CDCDs was carried out including a direct comparison to already established C D setups.

View Article and Find Full Text PDF