Publications by authors named "Johanna M van der Wouden"

The molecular mechanisms that regulate multicellular architecture and the development of extended apical bile canalicular lumens in hepatocytes are poorly understood. Here, we show that hepatic HepG2 cells cultured on glass coverslips first develop intercellular apical lumens typically formed by a pair of cells. Prolonged cell culture results in extensive organizational changes, including cell clustering, multilayering, and apical lumen morphogenesis.

View Article and Find Full Text PDF

Oncostatin M regulates membrane traffic and stimulates apicalization of the cell surface in hepatoma cells in a protein kinase A-dependent manner. Here, we show that oncostatin M enhances the expression of the cyclin-dependent kinase (cdk)2 inhibitor p27(Kip1), which inhibits G(1)-S phase progression. Forced G(1)-S-phase transition effectively renders presynchronized cells insensitive to the apicalization-stimulating effect of oncostatin M.

View Article and Find Full Text PDF

Sphingoid bases have been implicated in various cellular processes including cell growth, apoptosis and cell differentiation. Here, we show that the regulated turnover of sphingoid bases is crucial for cell polarity development, i.e.

View Article and Find Full Text PDF

Plasma membranes of epithelial cells consist of two domains, an apical and a basolateral domain, the surfaces of which differ in composition. The separation of these domains by a tight junction and the fact that specific transport pathways exist for intracellular communication between these domains and distinct intracellular compartments relevant to cell polarity development, have triggered extensive research on issues that focus on how the polarity is generated and maintained. Apart from proper assembly of tight junctions, their potential functioning as landmark for the transport machinery, cell-cell adhesion is obviously instrumental in barrier formation.

View Article and Find Full Text PDF

In recent years, glycosphingolipids (GSLs) have attracted widespread attention due to the appreciation that this class of lipids has a major impact on biological life. Inhibition of the synthesis of glucosylceramide, which serves as a precursor for the generation of complex glycosphinglipids, is embryonic lethal. GSLs play a major role in growth and development.

View Article and Find Full Text PDF

Hepatocytes are the major epithelial cells of the liver and they display membrane polarity: the sinusoidal membrane representing the basolateral surface, while the bile canalicular membrane is typical of the apical membrane. In polarized HepG2 cells an endosomal organelle, SAC, fulfills a prominent role in the biogenesis of the canalicular membrane, reflected by its ability to sort and redistribute apical and basolateral sphingolipids. Here we show that SAC appears to be a crucial target for a cytokine-induced signal transduction pathway, which stimulates membrane transport exiting from this compartment promoting apical membrane biogenesis.

View Article and Find Full Text PDF