Publications by authors named "Johanna M Montgomery"

The family of SHANK proteins have been shown to be critical in regulating glutamatergic synaptic structure, function and plasticity. variants are also prevalent in autism spectrum disorders (ASDs), where glutamatergic synaptopathology has been shown to occur in multiple ASD mouse models. Our previous work has shown that dietary zinc in and ASD mouse models can reverse or prevent ASD behavioural and synaptic deficits.

View Article and Find Full Text PDF

This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy.

View Article and Find Full Text PDF

Altered autonomic input to the heart plays a major role in atrial fibrillation (AF). Autonomic neurons termed ganglionated plexi (GP) are clustered on the heart surface to provide the last point of neural control of cardiac function. To date the properties of GP neurons in humans are unknown.

View Article and Find Full Text PDF

The intrinsic cardiac nervous system (ICNS) is composed of interconnected clusters of neurons called ganglionated plexi (GP) which play a major role in controlling heart rate and rhythm. The function of these neurons is particularly important due to their involvement in cardiac arrhythmias such as atrial fibrillation (AF), and previous work has shown that plasticity in GP neural networks could underpin aberrant activity patterns that drive AF. As research in this field increases, developing new techniques to visualize the complex interactions and plasticity in this GP network is essential.

View Article and Find Full Text PDF

NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines.

View Article and Find Full Text PDF
Article Synopsis
  • Autism is a complex condition characterized by various traits, including auditory sensitivity differences, making it challenging to study due to the diverse causes in humans and limitations of rodent models.
  • A systematic review analyzed 88 studies on rodent models of autism to assess their auditory processing capabilities using both non-invasive and invasive measures.
  • Key findings included consistent auditory responses such as increased latency of brain responses, changes in gamma activity, and heightened startle responses, suggesting a significant connection between rodent models and human auditory traits in autism.
View Article and Find Full Text PDF

Hypertensive heart disease (HHD) increases risk of ventricular tachycardia (VT) and ventricular fibrillation (VF). The roles of structural vs. electrophysiological remodelling and age vs.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a dyad of behavioural symptoms-social and communication deficits and repetitive behaviours. Multiple aetiological genetic and environmental factors have been identified as causing or increasing the likelihood of ASD, including serum zinc deficiency. Our previous studies revealed that dietary zinc supplementation can normalise impaired social behaviours, excessive grooming, and heightened anxiety in a Shank3 mouse model of ASD, as well as the amelioration of synapse dysfunction.

View Article and Find Full Text PDF

The SHANK family of proteins play critical structural and functional roles in the postsynaptic density (PSD) at excitatory glutamatergic synapses. Through their multidomain structure they form a structural platform across the PSD for protein-protein interactions, as well as recruiting protein complexes to strengthen excitatory synaptic transmission. Mutations in reflect their importance to synapse development and plasticity.

View Article and Find Full Text PDF

The discovery, in 1998, that the adult human brain contains at least two populations of progenitor cells and that progenitor cells are upregulated in response to a range of degenerative brain diseases has raised hopes for their use in replacing dying brain cells. Since these early findings, the race has been on to understand the biology of progenitor cells in the human brain, and they have now been isolated and studied in many major neurodegenerative diseases. Before these cells can be exploited for cell replacement purposes, it is important to understand how to (1) locate them, (2) label them, (3) determine what receptors they express, (4) isolate them, and (5) examine their electrophysiological properties when differentiated.

View Article and Find Full Text PDF
Article Synopsis
  • Autism Spectrum Disorders (ASDs) are related to difficulties in social interaction and repetitive behaviors, and they have a genetic basis with specific mutations affecting neural circuitry.
  • Researchers studied the effects of ASD-related mutations in the Shank2 protein on synaptic function using rat hippocampal cultures.
  • They found that while these mutations led to reduced synaptic density and impaired activity, supplementing with zinc could counteract these deficits, suggesting zinc might be a potential therapy for ASD.
View Article and Find Full Text PDF
Article Synopsis
  • Sympathetic activation can trigger dangerous heart issues in patients with long QT syndrome type 1 (LQT1), which is caused by certain genetic mutations.
  • Researchers studied sympathetic neurons derived from human stem cells of LQT1 patients to understand their functional characteristics, focusing on abnormalities linked to cardiac arrhythmias.
  • The results showed that these LQT1 neurons exhibited hyperactivity with increased neurotransmitter release and action potentials compared to healthy neurons, indicating that these neuronal changes may contribute to the arrhythmogenic risk in LQT1.
View Article and Find Full Text PDF

Microglia are the primary innate immune effectors of the central nervous system. Although numerous protocols have been developed to isolate fetal mouse microglia, the isolation of adult mouse microglia has proven more difficult. Here, we present a simple, widely accessible protocol to isolate pure microglia cultures from 4- to 14-month-old mouse brains using their adherent properties .

View Article and Find Full Text PDF

The ability to characterize and study primary neurons isolated directly from the adult human brain would greatly advance neuroscience research. However, significant challenges such as accessibility of human brain tissue and the lack of a robust neuronal cell culture protocol have hampered its progress. Here, we describe a simple and reproducible method for the isolation and culture of functional adult human neurons from neurosurgical brain specimens, adult human neurons form a dense network and express a plethora of mature neuronal and synaptic markers.

View Article and Find Full Text PDF

One of the major roles of the intracardiac nervous system (ICNS) is to act as the final site of signal integration for efferent information destined for the myocardium to enable local control of heart rate and rhythm. Multiple subtypes of neurons exist in the ICNS where they are organized into clusters termed ganglionated plexi (GP). The majority of cells in the ICNS are actually glial cells; however, despite this, ICNS glial cells have received little attention to date.

View Article and Find Full Text PDF

Sympathetic neurons (SNs) capable of modulating the heart rate of murine cardiomyocytes (CMs) can be differentiated from human stem cells. The electrophysiological properties of human stem cell-derived SNs remain largely uncharacterized, and human neurocardiac cocultures remain to be established. Here, we have adapted previously published differentiation and coculture protocols to develop feeder-free SNs using human-induced pluripotent stem cells (hiPSCs).

View Article and Find Full Text PDF

Autism Spectrum Disorders (ASD) are characterised by deficits in social interactions and repetitive behaviours. Multiple ASD-associated mutations have been identified in the Shank family of proteins that play a critical role in the structure and plasticity of glutamatergic synapses, leading to impaired synapse function and the presentation of ASD-associated behavioural deficits in mice. Shank proteins are highly regulated by zinc, where zinc binds the Shank SAM domain to drive synaptic protein recruitment and synaptic maturation.

View Article and Find Full Text PDF

Interactions along the neuro-cardiac axis are being explored with regard to their involvement in cardiac diseases, including catecholaminergic polymorphic ventricular tachycardia, hypertension, atrial fibrillation, long QT syndrome and sudden death in epilepsy. Interrogation of the pathophysiology and pathogenesis of neuro-cardiac diseases in animal models present challenges resulting from species differences, phenotypic variation, developmental effects and limited availability of data relevant at both the tissue and cellular level. By contrast, tissue-engineered models containing cardiomyocytes and peripheral sympathetic and parasympathetic neurons afford characterization of cellular- and tissue-level behaviours while maintaining precise control over developmental conditions, cellular genotype and phenotype.

View Article and Find Full Text PDF

Plasticity is a fundamental property of neurons in both the central and peripheral nervous systems, enabling rapid changes in neural network function. The intracardiac nervous system (ICNS) is an extensive network of neurons clustered into ganglionated plexi (GP) on the surface of the heart. GP neurons are the final site of neuronal control of heart rhythm, and pathophysiological remodeling of the ICNS is proposed to feature in multiple cardiovascular diseases, including heart failure and atrial fibrillation.

View Article and Find Full Text PDF

Plasticity within the neuronal networks of the brain underlies the ability to learn and retain new information. The initial discovery of synaptic plasticity occurred by measuring synaptic strength in vivo, applying external stimulation and observing an increase in synaptic strength termed long-term potentiation (LTP). Many of the molecular pathways involved in LTP and other forms of synaptic plasticity were subsequently uncovered in vitro.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease that is the most common cause of dementia. Symptoms of AD include memory loss, disorientation, mood and behavior changes, confusion, unfounded suspicions, and eventually, difficulty speaking, swallowing, and walking. These symptoms are caused by neuronal degeneration and cell loss that begins in the hippocampus, and later in disease progression spreading to the rest of the brain.

View Article and Find Full Text PDF

Autonomic nervous system dysregulation is involved in the pathophysiology of multiple cardiac arrhythmias, and therefore modulating sympathetic or parasympathetic input to the heart provides novel therapeutic options for arrhythmia management. Examples include decreasing intrinsic cardiac neuron communication, patterned vagal nerve stimulation, denervation, and blockade of post-ganglionic neurons. However, lessons from ventricular arrhythmias, where increased sympathetic activity and vagal rebound activity both amplify arrhythmia risk, stress the importance of understanding the regulatory mechanisms that modulate the balance and levels of sympathetic and parasympathetic activity.

View Article and Find Full Text PDF

The human brain shows remarkable complexity in its cellular makeup and function, which are distinct from nonhuman species, signifying the need for human-based research platforms for the study of human cellular neurophysiology and neuropathology. However, the use of adult human brain tissue for research purposes is hampered by technical, methodological, and accessibility challenges. One of the major problems is the limited number of in vitro systems that, in contrast, are readily available from rodent brain tissue.

View Article and Find Full Text PDF

In order to effectively record from electrically active cells through microelectrode arrays a low-noise amplification and data acquisition system is required. Although commercially available, these systems can be expensive and lack the freedom to customise hardware and software. In this work we present a low-cost (US$21 for the first channel + US$11 for each additional channel), low-noise amplifier coupled with an analog to digital converter from National Instruments.

View Article and Find Full Text PDF