Background: There is a critical need to develop valid, non-invasive biomarkers for Parkinsonian syndromes. The current 17-site, international study assesses whether non-invasive diffusion MRI (dMRI) can distinguish between Parkinsonian syndromes.
Methods: We used dMRI from 1002 subjects, along with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III), to develop and validate disease-specific machine learning comparisons using 60 template regions and tracts of interest in Montreal Neurological Institute (MNI) space between Parkinson's disease (PD) and Atypical Parkinsonism (multiple system atrophy - MSA, progressive supranuclear palsy - PSP), as well as between MSA and PSP.
Background: Development of valid, non-invasive biomarkers for parkinsonian syndromes is crucially needed. We aimed to assess whether non-invasive diffusion-weighted MRI can distinguish between parkinsonian syndromes using an automated imaging approach.
Methods: We did an international study at 17 MRI centres in Austria, Germany, and the USA.
Background: Imaging markers that are sensitive to parkinsonism across multiple sites are critically needed for clinical trials. The objective of this study was to evaluate changes in the substantia nigra using single- and bi-tensor models of diffusion magnetic resonance imaging in PD, MSA, and PSP.
Methods: The study cohort (n = 425) included 107 healthy controls and 184 PD, 63 MSA, and 71 PSP patients from 3 movement disorder centers.