Carbohydr Res
January 2025
Carbohydr Res
November 2024
Capsular polysaccharide (CPS) is a heteroglycan that coats the cell surface of most isolates of the important Gram-negative bacterial pathogen, Acinetobacter baumannii. Strain MAR 15-4076, a clinical isolate recovered in Russia in 2015, was found to carry the KL129 sequence at the CPS biosynthesis K locus. The CPS was isolated from the strain and studied by sugar analysis, Smith degradation, one- and two-dimensional H and C NMR spectroscopy.
View Article and Find Full Text PDFThe carbapenem-resistant isolate BAL062 is a clinical reference isolate used in several recent experimental studies. It is from a ventilator-associated pneumonia (VAP) patient in an intensive care unit at the Hospital for Tropical Diseases (HTD), Ho Chi Minh City, Vietnam in 2009. Here, BAL062 was found to belong to the B sub-lineage of global clone 2 (GC2) isolates in the previously reported outbreak (2008 and 2012) of carbapenem-resistant VAP at the HTD.
View Article and Find Full Text PDFThe structure of the K141 type capsular polysaccharide (CPS) produced by Acinetobacter baumannii KZ1106, a clinical isolate recovered from Kazakhstan in 2016, was established by sugar analyses and one- and two-dimensional H and C NMR spectroscopy. The CPS was shown to consist of branched tetrasaccharide repeating units (K-units) with the following structure: This structure was found to be consistent with the genetic content of the KL141 CPS biosynthesis gene cluster at the chromosomal K locus in the KZ1106 whole genome sequence. Assignment of the encoded enzymes allowed the first sugar of the K unit to be identified, which revealed that the β-d-GlcpNAc-(1→3)-d-GlcpNAc bond is the linkage between K-units formed by the Wzy polymerase.
View Article and Find Full Text PDFBackground: The Acinetobacter baumannii isolate called SMAL, previously used to determine the structures of capsular polysaccharide and lipooligosaccharide, was recovered in Pavia, Italy in 2002 among the collection of aminoglycoside-resistant isolates designated as SMAL type. This type was later called the Italian clone, then ST78. ST78 isolates are now widely distributed.
View Article and Find Full Text PDFInt J Biol Macromol
March 2024
The K239 type capsular polysaccharide (CPS) isolated from Acinetobacter baumannii isolate MAR19-4435 was studied by sugar analysis, one- and two-dimensional H and C NMR spectroscopy. K239 consists of branched heptasaccharide repeats (K-units) comprised of five residues of l-rhamnose (l-Rhap), and one residue each of d-glucuronic acid (d-GlcpA) and N-acetyl-d-glucosamine (d-GlcpNAc). The structure of K239 is closely related to that of the A.
View Article and Find Full Text PDFan important pathogen known for its widespread antibiotic resistance, has been the focus of extensive research within its genus, primarily involving clinical isolates. Consequently, data on environmental and other species remain limited. Here, we utilized Illumina and Nanopore sequencing to analyze the genomes of 10 isolates representing 6 different species sourced from aquatic environments in South Australia.
View Article and Find Full Text PDFK63 capsular polysaccharide produced by Acinetobacter baumannii isolate LUH5551 (previously designated isolate O24) was re-examined using sugar analysis, Smith degradation, and one- and two-dimensional H and C NMR spectroscopy. Though previously reported as O24 consisting of linear tetrasaccharide units that include a 7-acetamido-5-acylamino form of 8-epilegionaminic acid [8eLeg5R7Ac, acylated at C5 with (S)-3-hydroxybutanoyl or acetyl (1:1)], the elucidated structure of the K63 type capsule was found to include a derivative of 5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid, Leg5Ac7R, where R is either (S)-3-hydroxybutanoyl or an acetyl group (∼1:1 ratio). This finding is consistent with the presence of the lgaABCHIFG gene module for Leg5Ac7R biosynthesis in the KL63 gene cluster at the capsular polysaccharide (CPS) biosynthesis K locus in the LUH5551 genome.
View Article and Find Full Text PDFBacteriophage show promise for the treatment of infections that resist all therapeutically suitable antibiotics. Many tail-spike depolymerases encoded by phage that are able to degrade capsular polysaccharide (CPS) exhibit specificity for the linkage present between K-units that make up CPS polymers. This linkage is formed by a specific Wzy polymerase, and the ability to predict this linkage using sequence-based methods that identify the Wzy at the K locus could assist with the selection of phage for therapy.
View Article and Find Full Text PDFThe outer core locus (OCL) that includes genes for the synthesis of the variable outer core region of the lipooligosaccharide (LOS) is one of the key epidemiological markers used for tracing the spread of , a bacterial pathogen of global concern. In this study, we screened 12 476 publicly available genome assemblies for novel OCL sequences, detecting six new OCL types that were designated OCL17-OCL22. These were compiled with previously characterized OCL sequences to create an updated version of the OCL reference database, providing a total of 22 OCL reference sequences for use with the bioinformatics tool .
View Article and Find Full Text PDFMicrobiol Spectr
February 2023
The type of capsular polysaccharide (CPS) on the cell surface of Acinetobacter baumannii can determine the specificity of lytic bacteriophage under consideration for therapeutic use. Here, we report the isolation of a phage on an extensively antibiotic resistant ST2 A. baumannii isolate AB5001 that carries the KL3 CPS biosynthesis gene cluster predicting a K3-type CPS.
View Article and Find Full Text PDFCarbohydr Res
January 2023
A structurally diverse capsular polysaccharide (CPS) in the outer cell envelope plays an important role in the virulence of the important bacterial pathogen, Acinetobacter baumannii. More than 75 different CPS structures have been determined for the species to date, and many CPSs include isomers of a higher sugar, namely 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acid. Recently, a novel isomer having the d-glycero-l-manno configuration (5,7-di-N-acetyl-8-epipseudaminic acid; 8ePse5Ac7Ac) has been identified in the CPS from A.
View Article and Find Full Text PDFSeveral novel non-antibiotic therapeutics for the critical priority bacterial pathogen, , rely on specificity to the cell-surface capsular polysaccharide (CPS). Hence, prediction of CPS type deduced from genes in whole genome sequence data underpins the development and application of these therapies. In this study, we provide a comprehensive update to the K locus reference sequence database for CPS typing (available in ) to include 145 new KL, providing a total of 237 KL reference sequences.
View Article and Find Full Text PDFInt J Biol Macromol
October 2022
Two acylated forms of the higher sugar, 5,7-diamino-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid called pseudaminic acid, Pse5Ac7Ac and Pse5Ac7RHb where R indicates (R)-3-hydroxybutanoyl, have been found to occur in many capsular polysaccharide (CPS) types produced by isolates of an important human pathogen, Acinetobacter baumannii. The presence of either a psaABCEDF or psaABCGHF gene module at the K locus (KL) for CPS biosynthesis determines the type of the variant produced. Here, an A.
View Article and Find Full Text PDFInt J Biol Macromol
September 2022
Acinetobacter baumannii isolate LUH5552 carries the KL89 capsule biosynthesis gene cluster. Capsular polysaccharide (CPS) isolated from LUH5552 was analyzed by sugar analysis, Smith degradation, and one- and two-dimensional H and C NMR spectroscopy. The K89 CPS structure has not been seen before in A.
View Article and Find Full Text PDFMicrobiol Spectr
June 2022
is an opportunistic pathogen that is difficult to treat due to its resistance to extreme conditions, including desiccation and antibiotics. Most strains causing outbreaks around the world belong to two main global lineages, namely global clones 1 and 2 (GC1 and GC2). Here, we used a combination of Illumina short read and MinION (Oxford Nanopore) long-read sequence data with a hybrid assembly approach to complete the genome sequence of two antibiotic-sensitive GC1 strains, Ex003 and Ax270, recovered in Lebanon from water and a rectal swab of a cat, respectively.
View Article and Find Full Text PDFCapsular polysaccharide (CPS) is a key target for bacteriophage and vaccine therapies currently being developed for treatment of infections caused by the extensively antibiotic resistant bacterial species, Acinetobacter baumannii. Identification of new CPS structures and the genetics that drive their synthesis underpins tailored treatment strategies. A novel CPS biosynthesis gene cluster, designated KL139, was identified in the whole genome sequence of a multiply antibiotic resistant clinical isolate, A.
View Article and Find Full Text PDFWhole genome sequence from Acinetobacter baumannii isolate Ab-46-1632 reveals a novel KL144 capsular polysaccharide (CPS) biosynthesis gene cluster, which carries genes for d-glucuronic acid (D-GlcA) and l-rhamnose (l-Rha) synthesis. The CPS was extracted from Ab-46-1632 and studied by H and C NMR spectroscopy, including a two-dimensional H,C HMBC experiment and Smith degradation. The CPS was found to have a hexasaccharide repeat unit composed of four l-Rhap residues and one residue each of d-GlcpA and N-acetyl-d-glucosamine (D-GlcpNAc) consistent with sugar synthesis genes present in KL144.
View Article and Find Full Text PDFIdentification of novel therapeutic targets is required for developing alternate strategies to treat infections caused by the extensively drug-resistant bacterial pathogen, Acinetobacter baumannii. As capsular polysaccharide (CPS) is a prime virulence determinant required for evasion of host immune defenses, understanding the pathways for synthesis and assembly of this discrete cell-surface barrier is important. In this study, we assess cell-bound and cell-free CPS material from A.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2022
To enhance the utility of the genetically diverse panel of Acinetobacter baumannii isolates reported recently by Galac and coworkers (M. R. Galac, E.
View Article and Find Full Text PDFK87 capsular polysaccharide (CPS) was isolated from Acinetobacter baumannii isolate LUH5547 that carries the KL87 capsule biosynthesis gene cluster at the chromosomal K locus. Studies by sugar analysis, selective chemical cleavages, and 1D and 2D H and C NMR spectroscopy showed that the CPS has a branched heptasaccharide repeat (K unit) containing one residue each of d-glucose (d-Glсp), d-glucuronic acid (d-GlсpA), N-acetyl-d-glucosamine (d-GlсpNAc), 6-deoxy-l-talose (l-6dTalp), and three residues of l-rhamnose (l-Rhap). The following structure of the CPS was established: →3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-α-L-6dTalp-(1→3)-β-D-GlcpNAc-(1→2↑1β-D-GlcpA-(4←1)-α-D-Glcp(2←1)-α-L-Rhap The position of a minor O-acetyl group present in the CPS was not determined.
View Article and Find Full Text PDF