Oligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation.
View Article and Find Full Text PDFMitochondrial dynamics is an essential physiological process controlling mitochondrial content mixing and mobility to ensure proper function and localization of mitochondria at intracellular sites of high-energy demand. Intriguingly, for yet unknown reasons, severe impairment of mitochondrial fusion drastically affects mtDNA copy number. To decipher the link between mitochondrial dynamics and mtDNA maintenance, we studied mouse embryonic fibroblasts (MEFs) and mouse cardiomyocytes with disruption of mitochondrial fusion.
View Article and Find Full Text PDFIn the version of this article originally published, there was an error in Fig. 1a. The m.
View Article and Find Full Text PDFMutations in the mitochondrial DNA (mtDNA) are responsible for several metabolic disorders, commonly involving muscle and the central nervous system. Because of the critical role of mtDNA in oxidative phosphorylation, the majority of pathogenic mtDNA mutations are heteroplasmic, co-existing with wild-type molecules. Using a mouse model with a heteroplasmic mtDNA mutation, we tested whether mitochondrial-targeted TALENs (mitoTALENs) could reduce the mutant mtDNA load in muscle and heart.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) mutations become more prevalent with age and are postulated to contribute to the ageing process. Point mutations of mtDNA have been suggested to originate from two main sources, i.e.
View Article and Find Full Text PDFMitochondria were first postulated to contribute to aging more than 40 years ago. During the following decades, multiple lines of evidence in model organisms and humans showed that impaired mitochondrial function can contribute to age-associated disease phenotypes and aging. However, in contrast to the original theory favoring oxidative damage as a cause for mtDNA mutations, there are now strong data arguing that most mammalian mtDNA mutations originate as replication errors made by the mtDNA polymerase.
View Article and Find Full Text PDFMutations of mtDNA are an important cause of human disease, but few animal models exist. Because mammalian mitochondria cannot be transfected, the development of mice with pathogenic mtDNA mutations has been challenging, and the main strategy has therefore been to introduce mutations found in cell lines into mouse embryos. Here, we describe a phenotype-driven strategy that is based on detecting clonal expansion of pathogenic mtDNA mutations in colonic crypts of founder mice derived from heterozygous mtDNA mutator mice.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2015
Mitochondrial DNA has long been posited as a likely target of oxidative damage induced mutation during the ageing process. Research over the past decades has uncovered the accumulation of mitochondrial DNA mutations in association with a mosaic pattern of cells displaying mitochondrial dysfunction in ageing individuals. Unfortunately, the underlying mechanisms are far less straightforward than originally anticipated.
View Article and Find Full Text PDF